Categories
aviation Climate change Cycling Driving Electric Transport Environment Exercise Flight marine pollution Motorcycling Motoring Science Sport Technology Transport Vehicles

What Do Mars and Bicycles Have in Common?

It’s a lovely day.

The sky outside is an impossibly brilliant blue, with just the occasional cloud to add texture and remind me that nature is hard at work, even if I am not.

This is an absolutely perfect day for flying. Definitely VMC (For my non-aviation friends and readers, that is Visual Meteorological Conditions, meaning that navigating and staying in control of the aircraft is performed by looking out of the windscreen – rather than flying in cloud or above the cloud, thereby having to fly by using the aircraft instruments, known as Instrument Meteorological Conditions).

The perfect day for a fifteen minute trundle over to the airstrip, to pull my aircraft from the hangar. A quick but thorough pre-flight inspection, and then away up into the sky, to meander through the air, with no particular place to go.

Maybe a leisurely buzz south to the coast, then east to Beachy Head, and then back over the sunlit rolling chalk and downlands that make up large swathes of Sussex and Hampshire.

So, why then, am I sitting here in my den, hammering an article into my keyboard.

Well, for one thing, my aeroplane is currently being reassembled after a major rebuild. It’s sitting forlornly in the gloom of the hangar, its wings rigged, and its engine and systems all fitted. However, with no flight control surfaces rigged, she might as well be a boat.

Fully rigged, engine and systems up and running – but no flight controls…

Secondly, I am awaiting the arrival of the technician from Autoglass to change the windscreen on my car.

Travelling back home from work one afternoon, I thought that I had come under machine-gun attack, and the volley of stones that hit the screen might as well have been real bullets, as they plunged deep into the laminated glass, and with a noise like a pistol shot, three long cracks propagated across the screen.

A short phone call to my insurers and £75.00 lighter, and the windscreen would be fixed. It appeared that as I had previously had two chips repaired, this would be a brand new screen.

Well, I was expecting to have to make an appointment to drop the car off at a repair station, but no, it would be changed on my drive, and all in about an hour.

So, staying with the vehicle theme, some of you may have read my previous article on the levels of pollution that is caused by the interaction of car tyres on roads?

No?

It may be worth a read if you are interested in sustainability, climate change and pollution.

Vehicle tyres degrade with use, and the erosion of the tread causes the release of micro-particles that wash into waterways, and ultimately into the seas and oceans.

So, a new piece of space-age technology caught my eye.

My first exposure to NASA[1] was as a barely-ten-year-old boy watching the launch of Apollo 11 on the 16th of July 1969, and subsequently watching recorded footage of the lunar landing on school TV on Monday 21st July.

To say that I was awestruck was an understatement.  Subsequently I couldn’t read enough about space, and became an avid reader of the science fiction pulp magazines such as Astounding Science Fiction and Amazing Stories that my dear old Dad used to buy from the secondhand bookstall not far from the tube station.

I think that by the time I was 13, I had the complete works of the mighty Isaac Asimov on my bookshelves, and was familiar with all of the Sci-Fi greats; Arthur C Clarke, Robert Heinlein and Philip K Dick.

A few days before the launch of Apollo 11, the BBC aired it’s first episode of Star Trek, and I had become a fan almost instantly.

The Crew of NC-1701 Starship Enterprise – Star Trek the Original Series

And I have been a real fan of quality science fiction (not to be confused with science fantasy such as the Marvel Superheroes) ever since.

There has always been, however, a blurring of the lines between science fiction, and science fact. Which drives which?

In Star Trek, (the original series) we saw Captain Kirk being presented with what looks like an iPad tablet for him to sign. Uhura, the Comms Officer wears what looks like an ancestor to a Bluetooth earpiece, and Motorola designed a flip phone that looked suspiciously like a Star Trek communicator.

Lt. Uhura, wearing her early Bluetooth earpiece… Photo Courtesy ViacomCBS

I have to admit, that I am REALLY looking forward to using a dematerialisation transporter. Imagine just setting the co-ordinates of a friend’s house in California, and hitting the button and arriving microseconds later.

A universal replicator that ends poverty, and makes the use of money totally redundant…?

I digress…

So, it seems that Science Fact is now about to follow what was Science Fiction up until a few decades ago.

The continuing exploration of Mars has been conducted to a great extent by the Mars Rover vehicles, which have been sedately pottering over the Martian landscape since 1997. Kitted out with sensors, cameras and communications equipment these vehicles have been surveying our nearest planetary neighbour.

Perseverance, the Mars Rover – Photo Courtesy NASA/JPL-Caltech

In order to traverse the hostile terrain, the current rover, Perseverance, is equipped with six 52.5cm (20.7 inch) wheels made from aluminium and springy titanium spokes. The wheels are fitted with cleats for additional traction.

Well…

It seems that the NASA-developed tyre technology may be coming to a vehicle near you – well, initially, a bicycle near you!

NASA – Not just a Space Agency! Designers, Developers and Scientists

These highly advanced tyres are designed by the SMART (Shape Memory Alloy Radial Technology) Tire company, and manufactured by NASA using a highly elastic material called NiTinol+.

The Rover’s wheels – Light, and very robust! Photo Courtesy NASA/JPL-CalTech

Virtually all elastic materials will stretch, and then they may almost revert back to their previous shape and strength. Most will lose their resilience and potency – think of a well-used bungee strap.

The clever thing about the metal alloy used in the construction of Perseverance’s wheels is that it actually changes its molecular composition when it is flexed or distorted. Once no longer subjected to any loads, the material simply returns to its prior profile, and the molecules are rearranged to their previous composition.

Tyres constructed from this material would no longer need to have inner tubes, or be inflated with air – no more punctures, less weight, and the added strength of Titanium.

The outer surface of the “tyre” may be coated with a highly resilient synthetic rubber called Polyurethanium.

The robust nature of the tyre combination means that a SMART tyre will probably exceed the life of the vehicle to which it is fitted! There will be no risks of punctures, and deflations, no need to use sealants or carry a spare wheel.

In comparison to conventional steel, this new alloy, known as METL, is thirty times quicker to recover to its original profile. This made it ideal for use in the hostile environment and rugged terrain of Mars.

Now the good news!

These revolutionary tyres are about to be launched – initially for bicycles, which will enable further development to be carried out for heavier vehicles.

SMART Tire prototype clearly showing woven metal construction, Photo Courtesy SMART Tires

SMART Tires has already collaborated with the Micro-mobility scooter provider, Spin (owned by the Ford Motor Company) to develop tyres for electric scooters.

Currently, this is a small-scale project, but in due course, it will become a primary challenge for the $250 billion global tyre industry to adapt to and deliver. This will be driven, in part, by the ever more urgent need to reduce emissions of any kind.

SMART Tires aims to launch their range of tyres to the cycling community by 2022, and once in full production, will no doubt start developing wheel/tyre units for the automobile and motorcycle industries.

Prototype SMART Tyre designed for a bicycle – Photo courtesy SMART Tires

I imagine that the launch range of bike tyres will be expensive initially, and will appeal to only the upper echelons of competition cyclists, but the economy of scale will undoubtedly reduce prices to the level where they may be bought in your local high street bicycle shop.

So, in the words of Captain Jean-Luc Picard…

“Make it so!”

Well, Maybe buy one of these after I have bought the tyres! If I have any cash left!

[1] National Aeronautics and Space Administration

Categories
Climate change Ecological Environment Motorcycling Motoring Politics Science Society Technology Transport Travel Uncategorized

Tyres – The Invisible Ecological Menace

We have all heard almost to the point of frustration about climate change, pollution and how bad cars powered by fossil fuels are.

We are all exhorted to consider using an electric vehicle, or a hybrid so as to cut our carbon footprint, and stop climate change.

Obviously, all of this is deserving of support, and climate change is a very real threat, as is the increase in health problems as a result of the toxic gases in vehicle exhausts.

However, there is a sinister, yet little-publicised threat which may prove to be even more injurious to health and the marine environment, even if it has little impact on greenhouse gases and climate change.

Tyres.

CE914D82-F424-4259-B7CE-D3E02D29218E

Yes, you did read correctly. Tyres are in the top ten of nasty pollutants that contaminate the world with micro-particles.

Tyres. Those innocuous black things attached to the wheel rims of your car, van, motorcycle, truck or bus.

We all know that tyres wear out – as we all have to buy them now and again, if we are to stay safe and legal.

So, what happens to the worn bits of tyre?  Well, they are eroded by the road surface and are released as micro-fibres, particulates that are fine enough to form as a dust on the road surface.

Subsequently, rain water washes these microfibres into the drains and sewage systems, where they ultimately make their way into the maritime environment – yes, rivers, lakes, reservoirs and oceans.

Screenshot 2020-01-20 at 18.10.01

Much publicity is generated around single use plastics in the oceans, but little publicity is around related to this almost invisible pollution.

Some of the particles are small enough and light enough to be dragged up off the road surface by the aerodynamic wake of passing vehicles, and may be suspended for periods of time, allowing them to be blown by the wind over quite large distances.

It is estimated that annually 68,000 tonnes of microplastics are generated by tyre tread erosion in the UK alone, with 7,000 to 19,000 tonnes entering the surface water system[1]. Research is currently being undertaken in the UK to deepen our understanding of the migration of tyre generated microparticles into the maritime environment.[2]

It may not be common knowledge but tyres are not constructed from pure natural rubber, but consist of 60-70% synthetic rubber – made with our old friends, the hydrocarbons, so the emitted micro-particles are not readily biodegradable.

Unfortunately, the qualities that makes tyres suitable, such as good grip, good braking qualities, and good car handling qualities rely on the tyre gripping the road surface through friction.

Friction between the road surface and the tyre tread actually causes the erosion of the rubber, and leads to the problem. The interaction also erodes the road surface, and any road marking paint on it too – but that’s another story!

Tyre particles vary in size and composition, so it would challenge even Agatha Christie’s Poirot to identify and track how these particles behave, and where they go once they have been shed.

Such particles will be dispersed widely around roads and byways, drifted by winds and the effects of vehicle aerodynamics, washed into various drains, culverts and waterways by rain.

Once in the water system the particles will exhibit different levels of buoyancy, and some will float onwards into estuaries and ultimately into oceans, and others will sink to the bottom and become part of the estuary sediment.

It is estimated that up to 10% of tyre wear particulate matter is released as airborne particles, which will settle over land masses, thus polluting them too.

What can we, the driving public do to minimise the effects of this?

Firstly, we can modify our driving behaviour to reduce the loads that our tyres are under.

We can make efforts to accelerate and decelerate gently and progressively, we can make sure the tyres are correctly inflated and remove un-necessary loads from the vehicle. This would help.

We could operate a smaller vehicle with a smaller engine and a lower mass.

This is a pipe dream, and we all know it. Unless governments intervene to legally force the use of smaller vehicles, we won’t trade our “Executive Urban Assault Vehicles” to sit in a minicar capable of reaching only 60 miles an hour with a following wind!

On my daily commute to work, I pass Farnborough Airport. This is the home to many ecologically-unfriendly executive private jet aircraft. The main A road that passes adjacent to it has recently had a new 50 mph speed limit imposed upon it, reduced from its previous 70 mph limit.

Screenshot 2020-01-20 at 17.52.54

It seems that the local council are keen to reduce emissions in the local area!

Regardless of this, vehicles still charge past me doing well excess of the new limit, and the police don’t seem to be enforcing the new limit.

Maybe we should drive less distances?  Maybe we should alter our fundamental mind set to become more locally focused, and adopty a new philosophy of not commuting longer distances?

I don’t think human nature is going to fix this particular problem.

It appears that the main thrust of the ecological argument is to initiate a societal shift from driving hydro-carbon powered vehicles to electrically powered cars.

However, this only addresses a part of the problem. Even if there is a global adoption of battery driven vehicles, the problems associated with the pneumatic tyre remain.

Until we have mastered an alternative to the conventional tyre we are still in trouble.

The auto industry faces a parallel challenge. What do we use as an alternative to the conventional vehicle tyre?

Answers on a postcard please…

 

[1] Friends of the Earth Report “Reducing Household Contributions to Marine Plastic Pollution 11/2018

[2] UK Government Funding for Research into Tyre Tread Erosion and Pollution