Categories
Civil liberties Crime English Culture HEALTH internet Mobile Communications Politics privacy Science Security Society Technology Telecommunications Transport Vehicle Safety Wearable Technology Work

The Internet of Things – Friend or Foe?

Who likes history? If you do, then I invite you to take a little journey with me…

Cast your mind back to the early 1990s.

If you were one of the 10% of the UK population that possessed a cell-phone at that time, then you may well have owned one of these – a Nokia 1610.

The Nokia 1610 Cellular Telephone

It was a simple device – able to make and receive telephone calls, and send and receive text (SMS) messages. I was using this model of phone back then, and at the time it was regarded as one of the top phones available.

It had a tiny screen by today’s standards, and was quite bulky. The antenna, whilst small, was still an intrusion, and would often malevolently jam the phone into my pocket.

In 1996, 27% of the UK population owned a PC (In 2017, 88% of us had a computer at home). Mine was a Packard Bell desktop system that I bought from the now-vanished Dixons.

Packard Bell – The workhorse for the British Public in the mid 1990s, Bought from Dixons, long since gone from our High Streets.

I can’t remember how much the system cost me, but I do remember that I was entitled to a Freeserve email account, which I used for a good few years before moving over to web-based systems such as Outlook, Google or more recently Imail.

My home set-up was ludicrously simple. No passwords, or hunting for that elusive Wi-Fi router.

Just plug the Modem into the network port on the PC, plug the other end into the phone line using an adapter, and the system was ready for use.

Old-School. A dial up modem – Looked cool with flashing lights and that wonderful connection sound

Getting onto the internet though, was a whole different matter. This was the heady days of Dial-Up Internet.

Simply open the web browser, and hit the connect button. The auto-dialler inside the PC would dial the number for the Internet Service Provider, and once connected, you would have been treated to the squeals and squawks of the computers setting up the connection.

Ahh, Yes, I remember something similar!


Once connected, the upload and download speeds were truly awful. I well remember downloading a detailed photograph. It appeared line by line, and eventually, after five minutes or so, I got bored with waiting and went downstairs to make a cup of tea. I came back twenty minutes later – and it was still not finished.

Today, with fibre broadband, images appear almost instantaneously!

The internet was pretty simple too. Basic browsers that contained a multitude of adverts, and rather unsophisticated email. Shopping online was in its infancy – eBay had only been started in 1995.

So, the interconnected world really consisted of a computer, hard wired to a modem, and the embryonic world wide web.

The only real risk attached to surfing the web, was that of unwittingly downloading malicious software (malware) or computer virus.

The first computer virus was designed in the early 1970s. It was created as part of a research programme conducted by BBN Technologies in the USA.

Researcher Bob Thomas designed the programme to be self-replicating and was targeted at DEC computers that shared the ARPANET network. This virus was called Creeper.

Bob and his team then designed a programme called Reaper which, once released into the ARPANET, hunted out the infected machines, and then killed the virus by deleting it.

Obviously, breaking into computers was seen as a target of opportunity to the less honest members of society, and viruses started appearing more frequently.

Some were just mischievous, such as the Elk Cloner virus (written by a ninth grader in a Pittsburgh High School in 1981) which upon its 50th opening would display a poem, the first line of which was “Elk Cloner: The program with a personality.”

Others were more malevolent, and were designed to either destroy records and data from the infected computer, steal personal data, record website access passwords and log keystrokes. Ransomware enables the attacker to hijack a computer, and then demand payment to unlock the machine.

The resulting loss of public confidence saw the arrival of cyber-security, specialist organisations that analysed the emerging viruses, worms, trojans and malware and wrote anti-virus software, which could be loaded onto a computer and which could then subsequently scan it for infection and quarantine any suspect viruses into a part of the disc not readily accessible by the user, or by the system.

Fast-forward to 2021.

The internet has evolved – and BOY has it developed! If you are privileged enough to live in a developed country, you may already be using fibre-optic broadband, offering speeds of up to 1 Gigabit per second.

According to recent UK survey Hyperoptic offer a 1GB service for an introductory offer of £45.00 per month!


This is jaw-droppingly fast. To put it into perspective, it would have taken about 3.5 days to download a 4K film (about 2GB) using a 56kbit dial up service.

My previous broadband was copper-wire based, and the fastest speed I ever achieved for a download was 8Mb/sec – and that same 4K film would have been delivered to me in 35 minutes.

My latest broadband is totally optical and is Fibre-to-the-Premises (FTTP) and my download speed is a minimum of 71Mb/sec – that 4K movie is now mine in about 4 minutes.

One of the major advantages of broadband, is that unlike a dial up service, the system is “always on”. The old modem has been replaced with a router, which essentially does the same job, but additionally acts as a network hub, through which multiple devices may be connected simultaneously.

BT Hub – A home router, Wi-Fi enabled, with 2GHz and 5GHz Channels

Whilst is it possible to connect equipment to the router using a network cable, most routers offer Wi-Fi connection, and this allows several Wi-Fi/internet-enabled devices to connect to the internet simultaneously.

With a sufficiently fast connection, it is possible for SWMBO to watch a movie on Netflix, whilst I catch up with a friend on a video call, or listen to the internet radio.

Why am I rambling on about this?

Well, technological advances never stop, and there is much publicity about the new 5G (5th generation communications network) which will increase the speed and capacity of the internet even further.

In my previous article, “Who is Driving YOUR Car?” I explored the embryonic Intelligent Transport System, which relies on internet-enabled vehicles and sensors in the fixed transport network, communicating with each other to provide optimised traffic flows and traffic safety management.

This is only made possible with 5G communications and ultra-fast internet systems, and the Internet of Things (IoT)

The Internet of Things is the medium through which our emerging “Smart Society” will operate.

In essence, the IoT consists of items that have the capability to connect to the internet, and communicate and exchange data with other similarly enabled things. These “things” may have sensors, software and other systems to support their intended purposes.

It could be a device as simple as a smart lightbulb that is able to be activated by a smart assistant such as Alexa or Siri, or from a suitably equipped smartphone – located perhaps many miles away.

Such items are already used in intelligent Building Management and Control systems, which employ an array of interconnected sensors to monitor heat and humidity, occupancy levels, lighting, lifts (Elevators for my US readers 😁) and security within a building.

Intelligent Healthcare uses the IoT to monitor medical data such as cardiac performance and blood pressure, or blood glucose levels. This enables improved management of an individual’s medical conditions. Significant research is being conducted in this area, and there are already several emerging disciplines and specialities.

The Internet of Things is also used in industry and manufacturing, to monitor and control processes – making use of internet-enabled sensors.

We are now seeing “Smart Homes” being built, which use the same type of Wi-Fi-connected IoT devices to control home environmental systems.

Smart Home hub

I imagine that a fair percentage of you may well be protecting your property with Closed Circuit TV Cameras. It’s probable that most of these cameras will be Wi-Fi-connected to your home broadband – and from there out onto the web.

A Wi-Fi enabled Internet CCTV Camera – A hackers back door into your systems? Photo ©Mark Charlwood

Maybe some of you will have an App on your smartphone or tablet that enables you to remotely view the camera feeds.

Smart speakers such as Amazon’s Alexa, Apple’s Homepod and Google’s Home are wirelessly connected to home networks, and are continuously monitoring their environment for their wake-up command (such as “Alexa”)

Smart doorbells enable us to see who is at the front door using integral video cameras and transmitting the footage over the internet via the home router and to an app on a smart phone.

Smart appliances, such as Samsung’s Smart Refrigerator now offer us the ability to manage our food.

Smart Fridge – Whatever Next?

An internal camera within the fridge compartment enables the user to view the contents by using a smart phone. The system will also monitor food expiry dates, without the door being opened, thus saving power.

Some models also enable groceries to be ordered via the fridge – a rather redundant feature in my opinion, as you can order your groceries online from your phone, tablet, laptop or PC.

Or, for the truly bold and adventurous – take a risk, and actually go into a shop and buy your groceries.

A large LCD screen is provided in order to display a family calendar, and if you really haven’t got enough tech in your home, it’s also fitted with a 5W Stereo sound system to play your favourite music tracks.

Poor Alexa… She may feel quite outranked by the domestic white goods!

Smart Washing machines are able to connect to the home network, and may be controlled remotely using an app, and are able to automatically sense loads, apply the correct dose of detergent, and add the optimal amount of water.

On some models, the best programme for the laundry load may be selected by filling in a few pieces of information on the app.

I’m sure it won’t be long before your garments will be fitted with a passive RFID tag, or a label barcode, and the machine will scan the items as they are loaded, and then set the correct wash programme.

Should an item that is not compatible with other items in the load be added inadvertently then the machine will inhibit the washing cycle from starting until the guilty culprit is removed.

No more business shirts stained girlie pink then!

Result!

As a society, we are all used to smart watches, and fitness trackers, (which all fall within the scope of wearable technology) and have become very complacent about the interconnectivity with our other tech.

And this is where the real problem lies…

Security MUST be one of your top priorities these days. I have removed my profile permanently from Facebook, as the platform discretely harvests everything I “like” and every comment I make. My preferences and personal data are then sold to other organisations, without my permission and regardless of the ethics involved.

Think about why Google and Facebook are free! There really is no such thing as a free lunch.

Most of you will already be protecting your data and PC behind an encrypted firewall, with passwords, multi-factor authentication, and PIN codes. In all probability, you will be paying for some kind of anti-virus protection which will (hopefully) prevent your data from being compromised.

The IoT makes this a lot more difficult.

The processing power inside some of the connected devices, and to an extent, their size may well prevent them from having all but the most basic of security protection – if any.

The CCTV you bought to protect your home may well be being used by the manufacturer, or a malicious hacker to access a backdoor into your router, from where it can monitor data passing up and down your comms link.


So, all of these innocent devices are hooked to the web via your router.

Lots of individuals I know never both changing the default password supplied with their devices, and will happily discuss bank details, finances, and other personal details within “earshot” of their smart speaker.

So, nasty hacker chap decides to wage an attack on his ex-employer. By harnessing the combined IoT devices of many households, and requiring all of them to connect simultaneously to the target company’s website will cause it to crash.

This is an extreme example of a Distributed Denial of Service Attack (DDoS), where innocent PCs and devices are hijacked to overload the target’s website.

Many large and respected companies have been attacked in this manner, despite having the financial clout and technical expertise to surround themselves with multiple layers of digital security.

In 2017, Google came under a sustained DDoS attack, originating from China, which, according to Google, lasted for up to six months.

In 2020, Amazon Web Services (AWB) was taken down for three days following a similar, yet more sophisticated attack.

Internet security expert Brian Krebs was attacked in 2016, when his website was assaulted by the Mirai botnet, executed by about 600,000 compromised and suborned Internet of Things – such as Internet CCTV cameras, home routers, and other simple IoT devices.

This may be the tip of the iceberg.

Cisco, the internet systems company predicted in its annual report (2018-2023) that sophisticated DDoS attacks will double from the 7.9 million in 2018 to 14.5 million in 2022.

Now the truly chilling bit…

In our increasingly technological world, we rely on the internet in so many ways – from grocery shopping to building control, from home banking to healthcare. Connected vehicles – not just cars, but ships, aircraft, tankers, trains.

As I have said, many of these devices are so simple and un-assuming, that we don’t regard them as a potential threat.

That simple fitness tracker that you wear all the time. The silly old fridge, just sitting there in your kitchen, keeping your food safe and edible. The CCTV that you use to monitor your car in the drive.

The ease and convenience with which you access your bank to pay a bill. The ability to have a video call with your dear old Mum from miles away.

And yet, in the stygian, gloomy murk of the deep, dark web, there lurk hackers, thieves, and criminals. Hackers who are willing to mount cyber-attacks from as little as 7.00 US$ per hour.

Foreign states, and terrorist organisations that are willing – and able – to hijack your IoT devices to wage an attack on society.

Imagine, if you dare – a world where the bad guys can hack into your car, and disable the brakes.

A world in which someone can access your pacemaker, and shut it down…unless you pay a ransom.

A world in which a hacker can eavesdrop on your home, and record everything that you say and do, and record everything about you?

It’s not as far-fetched and dystopian a reality as you think!

Go Well!

Categories
Civil liberties Driving Electric Transport Mobile Communications Motorcycling Motoring Music Nostalgia Science Society Technology Transport Travel Vehicle Safety Vehicles

Who is Driving YOUR Car?

Those of you who are of a “certain age” may well remember the song Car 6-7, the lyrics of which tell the sad story of a taxi driver who has split up from his girlfriend, and is turning down a pick-up from control, as it’s the ex-girlfriend.

That was back in November 1978, and the old-fashioned two-way VHF radios used in taxi cabs have been largely been updated, and to a certain extent have been superseded by smart phones and booking software.

Typical 2-way VHF transceiver as used by mini-cab companies in the 1970s and 1980s

We have all become used to very sophisticated communications systems; Bluetooth earpieces and microphones, Wi-Fi internet connections, cordless phones and smart speakers such as Alexa.

Modern cars are no exceptions. My car has a Bluetooth system that will support two mobile phones; My 2013 motorcycle has the same. 

Very sophisticated.

Well, it was in 2017 when it rolled off the production line in Kvasiny in the Czech Republic.

Kvasiny in the Czech Republic – the home of the Skoda Yeti…

But things are changing fast, and we are now moving into the world of Intelligent Transport Systems (ITS).

ITS is a futuristic totally integrated transport system that uses an infrastructure of sensors, communications links, artificial intelligence and algorithms to monitor and manage traffic flow, safety and incidents. Data collected may also be used to help design safer and more efficient transport systems, which may be optimised for different conditions.

We are already using a very basic kind of ITS; We have CCTV cameras that remotely monitor our motorways and road networks. Automatic Number Plate Recognition (ANPR) cameras that are able to identify and trackthe driving behaviour of a specific vehicle, and monitor entry and exit times of vehicles using private car parking facilities.

ANPR and CCTV cameras…

We have under-road systems that monitor the volume and speed of traffic[1] – (You may have wondered about those geometric grids in each lane of the motorway placed at regular intervals?), speed-monitoring enforcement cameras mounted on overhead gantries, and Variable Message Signs (VMSs) 

All of these systems will look like they came out of the stone age when compared with what’s coming very soon.

Intelligent Transport Systems combine data that comes from a variety of sources. 

One of the sources of dynamic data are vehicles that are actually using the road network.

Cars have recently become a lot smarter. My ancient vehicle (4 years old) is just about capable of talking to my smart phone. 

New vehicles will be able to communicate on many different levels.

Imagine, if you will, a car that is able to independently communicate with other, similarly equipped vehicles.This is the most basic system, referred to as V2V

Cars are already fitted with Autonomous Driver Assistance Systems which include obstacle detection, autonomous emergency braking, lane departure warning systems, and adaptive cruise control. See my previous article entitled Autonomous Vehicle Safety Devices – Do you turn YOURS off? for details.

Maybe the car ahead detects an obstacle, and applies the emergency brakes. This information in instantaneously broadcast to all following vehicles, and this in turn allows them to begin braking – before a human driver is even aware that an emergency exists.

Vehicles may also be designed to interact with the infrastructure (traffic signals, traffic density and speed monitors, road condition sensors etc). This is known as V2I. 

A V2V/V2I equipped vehicle starts to lose traction on a wet road, and begins aquaplaning. A message is sent from the vehicle to other vehicles, and also to the fixed highway infrastructure. The infrastructure may then automatically activate warning signs and reduce speed limits accordingly.

This is not science fiction.  This is Science Fact.

Infrastructure sensors that continually monitor the depth of water on the road surface and the road surface temperature already exist, and are integrated into the ITS. 

The UK’s Vehicle and Operator Services Agency (VOSA) have been operating a sophisticated network of subsurface sensors that are capable of accurately detecting overloaded Heavy Goods Vehicles. This system is known as WIMS, short for Weight In Motion Sensors. This uses induction loops and special sensors to detect the weight being carried by each axle of the truck in question. When combined with ANPR cameras, the system will identify the vehicle, and also be able to calculate whether it is overloaded, and whether it is complying with the speed limit.

Other car communications systems enable the vehicle to exchange data with the wider internet of things, and may also inter-exchange with other transport modes. This is known as Vehicle to Cloud (V2C). This would enable a vehicle to be able to communicate with trains, aircraft ships and exchange other relevant data.

Lastly, cars will also be able to communicate with pedestrians. (V2P). This would allow vehicles to update pedestrians on their status, and speed of approach. Such information could be received by the pedestrian by using a smart phone. 

Cars, trucks, buses, motorcycles, farm vehicles and even bicycles will all become part of a communicating interactive network, and ultimately connected to the global internet of things.

Combine the automated on-board driver assistance systems with the benefits of a smart, thinking and proactive transport network, and road safety may show some dramatic improvements.

Currently in the UK, about 40% all vehicle accidents were as a direct result on a driver “failing to see” the other vehicle. 

In our brave new world, your car probably won’t let you pull out of that junction as its already identified an approaching car, assessed the risk, and calculated that there would be a collision! That’s assuming that both cars are V2V/V2I equipped.

Old duffers like me driving a 2017 model will still have to rely on the Mark I eyeball, and the basic training received nearly 45 years ago.

The old saying that the best safety device in a car was a well-trained driver may no longer be true.

Live Long and Prosper…


[1] MIDAS – Motorway Incident Detection and Auto-Signalling. An Induction loops system that senses a vehicles presence using magnetism.