Categories
aviation Climate change Cycling Driving Electric Transport Environment Exercise Flight marine pollution Motorcycling Motoring Science Sport Technology Transport Vehicles

What Do Mars and Bicycles Have in Common?

It’s a lovely day.

The sky outside is an impossibly brilliant blue, with just the occasional cloud to add texture and remind me that nature is hard at work, even if I am not.

This is an absolutely perfect day for flying. Definitely VMC (For my non-aviation friends and readers, that is Visual Meteorological Conditions, meaning that navigating and staying in control of the aircraft is performed by looking out of the windscreen – rather than flying in cloud or above the cloud, thereby having to fly by using the aircraft instruments, known as Instrument Meteorological Conditions).

The perfect day for a fifteen minute trundle over to the airstrip, to pull my aircraft from the hangar. A quick but thorough pre-flight inspection, and then away up into the sky, to meander through the air, with no particular place to go.

Maybe a leisurely buzz south to the coast, then east to Beachy Head, and then back over the sunlit rolling chalk and downlands that make up large swathes of Sussex and Hampshire.

So, why then, am I sitting here in my den, hammering an article into my keyboard.

Well, for one thing, my aeroplane is currently being reassembled after a major rebuild. It’s sitting forlornly in the gloom of the hangar, its wings rigged, and its engine and systems all fitted. However, with no flight control surfaces rigged, she might as well be a boat.

Fully rigged, engine and systems up and running – but no flight controls…

Secondly, I am awaiting the arrival of the technician from Autoglass to change the windscreen on my car.

Travelling back home from work one afternoon, I thought that I had come under machine-gun attack, and the volley of stones that hit the screen might as well have been real bullets, as they plunged deep into the laminated glass, and with a noise like a pistol shot, three long cracks propagated across the screen.

A short phone call to my insurers and £75.00 lighter, and the windscreen would be fixed. It appeared that as I had previously had two chips repaired, this would be a brand new screen.

Well, I was expecting to have to make an appointment to drop the car off at a repair station, but no, it would be changed on my drive, and all in about an hour.

So, staying with the vehicle theme, some of you may have read my previous article on the levels of pollution that is caused by the interaction of car tyres on roads?

No?

It may be worth a read if you are interested in sustainability, climate change and pollution.

Vehicle tyres degrade with use, and the erosion of the tread causes the release of micro-particles that wash into waterways, and ultimately into the seas and oceans.

So, a new piece of space-age technology caught my eye.

My first exposure to NASA[1] was as a barely-ten-year-old boy watching the launch of Apollo 11 on the 16th of July 1969, and subsequently watching recorded footage of the lunar landing on school TV on Monday 21st July.

To say that I was awestruck was an understatement.  Subsequently I couldn’t read enough about space, and became an avid reader of the science fiction pulp magazines such as Astounding Science Fiction and Amazing Stories that my dear old Dad used to buy from the secondhand bookstall not far from the tube station.

I think that by the time I was 13, I had the complete works of the mighty Isaac Asimov on my bookshelves, and was familiar with all of the Sci-Fi greats; Arthur C Clarke, Robert Heinlein and Philip K Dick.

A few days before the launch of Apollo 11, the BBC aired it’s first episode of Star Trek, and I had become a fan almost instantly.

The Crew of NC-1701 Starship Enterprise – Star Trek the Original Series

And I have been a real fan of quality science fiction (not to be confused with science fantasy such as the Marvel Superheroes) ever since.

There has always been, however, a blurring of the lines between science fiction, and science fact. Which drives which?

In Star Trek, (the original series) we saw Captain Kirk being presented with what looks like an iPad tablet for him to sign. Uhura, the Comms Officer wears what looks like an ancestor to a Bluetooth earpiece, and Motorola designed a flip phone that looked suspiciously like a Star Trek communicator.

Lt. Uhura, wearing her early Bluetooth earpiece… Photo Courtesy ViacomCBS

I have to admit, that I am REALLY looking forward to using a dematerialisation transporter. Imagine just setting the co-ordinates of a friend’s house in California, and hitting the button and arriving microseconds later.

A universal replicator that ends poverty, and makes the use of money totally redundant…?

I digress…

So, it seems that Science Fact is now about to follow what was Science Fiction up until a few decades ago.

The continuing exploration of Mars has been conducted to a great extent by the Mars Rover vehicles, which have been sedately pottering over the Martian landscape since 1997. Kitted out with sensors, cameras and communications equipment these vehicles have been surveying our nearest planetary neighbour.

Perseverance, the Mars Rover – Photo Courtesy NASA/JPL-Caltech

In order to traverse the hostile terrain, the current rover, Perseverance, is equipped with six 52.5cm (20.7 inch) wheels made from aluminium and springy titanium spokes. The wheels are fitted with cleats for additional traction.

Well…

It seems that the NASA-developed tyre technology may be coming to a vehicle near you – well, initially, a bicycle near you!

NASA – Not just a Space Agency! Designers, Developers and Scientists

These highly advanced tyres are designed by the SMART (Shape Memory Alloy Radial Technology) Tire company, and manufactured by NASA using a highly elastic material called NiTinol+.

The Rover’s wheels – Light, and very robust! Photo Courtesy NASA/JPL-CalTech

Virtually all elastic materials will stretch, and then they may almost revert back to their previous shape and strength. Most will lose their resilience and potency – think of a well-used bungee strap.

The clever thing about the metal alloy used in the construction of Perseverance’s wheels is that it actually changes its molecular composition when it is flexed or distorted. Once no longer subjected to any loads, the material simply returns to its prior profile, and the molecules are rearranged to their previous composition.

Tyres constructed from this material would no longer need to have inner tubes, or be inflated with air – no more punctures, less weight, and the added strength of Titanium.

The outer surface of the “tyre” may be coated with a highly resilient synthetic rubber called Polyurethanium.

The robust nature of the tyre combination means that a SMART tyre will probably exceed the life of the vehicle to which it is fitted! There will be no risks of punctures, and deflations, no need to use sealants or carry a spare wheel.

In comparison to conventional steel, this new alloy, known as METL, is thirty times quicker to recover to its original profile. This made it ideal for use in the hostile environment and rugged terrain of Mars.

Now the good news!

These revolutionary tyres are about to be launched – initially for bicycles, which will enable further development to be carried out for heavier vehicles.

SMART Tire prototype clearly showing woven metal construction, Photo Courtesy SMART Tires

SMART Tires has already collaborated with the Micro-mobility scooter provider, Spin (owned by the Ford Motor Company) to develop tyres for electric scooters.

Currently, this is a small-scale project, but in due course, it will become a primary challenge for the $250 billion global tyre industry to adapt to and deliver. This will be driven, in part, by the ever more urgent need to reduce emissions of any kind.

SMART Tires aims to launch their range of tyres to the cycling community by 2022, and once in full production, will no doubt start developing wheel/tyre units for the automobile and motorcycle industries.

Prototype SMART Tyre designed for a bicycle – Photo courtesy SMART Tires

I imagine that the launch range of bike tyres will be expensive initially, and will appeal to only the upper echelons of competition cyclists, but the economy of scale will undoubtedly reduce prices to the level where they may be bought in your local high street bicycle shop.

So, in the words of Captain Jean-Luc Picard…

“Make it so!”

Well, Maybe buy one of these after I have bought the tyres! If I have any cash left!

[1] National Aeronautics and Space Administration

Categories
Climate change Ecological Environment Mobile Communications Science Society Technology Wearable Technology

Power Generating Flooring? What a load of Rot…

I walked into my den, clutching a fresh cup of tea, ready to start writing a new article. The squeaky floorboard near the door irritated me somewhat, as SWMB and I had taken every effort (as did our builder) to ensure that the wooden planks didn’t squeak as we walked around the house.

This plan worked well for the first few months, but gradually, the floor and stairs conspired against us, and began to creak as we walked around the house.

In some of the rooms, we managed to inject a resin compound to stop the slight movements, which is accomplished by drilling two small holes into the planks, and squiring the goo in under pressure.

Two tiny holes to stop a squeak… Photo Mark Charlwood©

This, again, worked for a while, until the creaks started coming back – and just when I thought that it was safe…

I personally don’t mind a few little creaks and squeaks, as it adds character to the place.

Squeaks and creaking floorboards happen as a result of the wood settling down, and as it ages, as all natural products do, it flexes more readily, and allows each plank to move slightly against adjoining planks, or shift slightly upon the joist to which it is fixed.

My mind wandered back to the old, edwardian house that I grew up in. Its’ uneven old floorboards used to grumble and groan, even when they were only supporting the weight of a poorly five-year-old.

That old house is etched into my brain indelibly.

When I was a kid, my Mum did all of the familys’ hot meals on a gas cooker, or in the gas oven. As a small boy, I well remember my Dad attempting to boil a kettle, striking match after match, and hearing him curse as the igniting gas finally engulfed his fingers, singing the hairs on his hand as he fumbled, without success to light a gas jet.

In the end the old boy arrived home one day with a small mechanical flint lighter, which was great news for Mum, as the shower of sparks lit the jet with ease.

Simple but effective – a simple spring steel flint lighter.

A few years later, Dad came home with his latest high-tech acquisition – a Piezo-electric butane lighter. This neat device contained a small reservoir of liquified butane gas, and a trigger that when pulled would generate a nice fat blue spark at the tip.

Easy and quick – and I still use one for fire lighting. Photo Mark Charlwood©

The resulting mini flame thrower was a teenage schoolboys’ delight.

I remember being intrigued with the way it worked.

The piezoelectric principle was discovered in the late 1880s. It was found that if certain materials were flexed, an electric current would be produced.

Over the years, this principle was developed, and has subsequently given us SONAR[1], inkjet printers, cigarette lighters, loudspeakers, motors such as those found on autofocus mechanisms in cameras and medical equipment.

Goodyear Tyres even considered using Piezoelectric technology to be used inside the carcase of a tyre that would generate electrical power every time the tyre flexed.

Why am I telling you about all this, when I normally write about new technology, sustainability and alternative energy?

There is a link, believe me.

So, back to sustainability.

Wood is a wonderful material for using in the construction of houses. If sourced responsibly, it is relatively inexpensive, reusable and recyclable. It also offers good levels of thermal and sound insulation, is relatively stable and may be machined fairly easily.

Timber stacked ready to be turned into a house

It is strong and resilient, and may be used in virtually every aspect of the construction of a house, from walls to roofing, and floors to cladding.

Whilst pottering about in the depths of the internet, I stumbled across a reason for welcoming potentially squeaky boards into your homes.

It seems that a team of researchers in Switzerland have established that timber, when flexed also exhibits the piezo electric effect.

Obviously, if it were to be possible to harvest the electrical output generated by people simply walking across a floor then this would assist in the battle to make homes carbon neutral.

The problem is that the types of wood used in flooring do not have enough flexibility to generate power effectively.

The research team discovered that by introducing a mild form of fungus (a white rot) the decaying process could be accelerated a little, and this in turn made the sample wood (balsa in the case of this early research) much more flexible – to the point that harvesting an electrical output became possible.

When a piece of wooden veneer was treated with the fungus, and then fitted with a piezo-electric converter, the plank would produce a voltage whenever it was trodden on!

The voltage was only small – just 0.85 Volts, and at a very low current, but the scientific conclusion is that the output could be scaled up.

Naturally, it’s likely that such a bio-engineered concept would only work over a large square area of floor, with a high traffic load, such as an office, auditorium, ballroom or gymnasium.

Harnessing nature and working with it may offer better long-term solutions to some of our global problems.

I guess the alternative is to incorporate piezoelectric sensors in my shoes, and charge my iPhone in my pocket?

Yes – Really! Walk 10,000 steps, get fit, and charge your phone!

Meanwhile, I will just accept that my floor is just sighing contentedly…

Go Well.


[1] SOund NAvigation and Ranging – The use of sound waves to both navigate a submarine whilst submerged and to calculate ranges undersea for the firing of torpedos. Known as ASDIC by the Royal Navy during WW2

Categories
English Culture HEALTH internet Mobile Communications opticians Science Society Technology Vision Wearable Technology

A Book at Bedtime? Yes, but don’t use your iPad!

Following on from my most recent publication, one of my most loyal and long-standing readers (and good friend) commented that it was “A particularly (expletive deleted) gloomy blog today, Mr. Charlwood. Glass half empty is it?!!”

My Glass is never half empty – it just needs topping up regularly. Photo: Mark Charlwood©

OK, I admit that it was unlike most of my articles and was a little doom-laden, but I was, indeed, trying to make a point – and that is we really don’t take our personal data security that seriously.

During the text-based conversation that followed, we got around to talking about social media, and how much time it absorbs without our awareness.

When I used Facebook regularly, I could easily spend an hour and a half scrolling through my news feed, and commenting on friends’ activities and responding to posts mentioning me.

It shocked me when I analysed my Screen Time app on my Apple iPhone to see just how much time I was investing in what is, to all intents and purposes, a solo activity.

It seemed that I was spending 5 hours a day staring into my screen. To be fair, 2 hours of that was using the satnav function of the ‘phone in the car.

I hasten to add, that it’s not that I forget how to drive the 44 miles to work, but for updates on traffic, and route optimisation, but the Screen Time system still includes it in the tracking. I must remember to re-configure the Screen Time app so that it ignores screen use when I am using Waze.

So, 3 hours!

3 hours is a lot. Over 95% of that time was using Facebook. 2% was using LinkedIn. Luckily, Facebook was the only social media I really used – I could have been spending far more time if I also used Twitter, Instagram, TikTok and Snapchat.

I stopped using Facebook three weeks ago. This was as a direct result of Facebook’s “bully-boy” tactics of denying both local and international news from being shared on its’ Australian service. This was pretty much the straw that broke the camels’ back. I had been getting increasingly uncomfortable with the way that the platform harvests my personal data.

Since then, the time I spend locked into my ironically isolated world, whilst I “engage” socially with my friends has reduced enormously.

My Screen Time has plummeted by 70% – and my daily average screen time is 2h 41m which includes 1h 54m of travel.

Screen Time app, resident on iPhones and iPads… Photo: Mark Charlwood©

I note that my most used apps are WhatsApp (soon to be deleted and replaced with Signal), Messages, Safari, LinkedIn, and Mail.
Not surprising really, as without the need to be locked into social media, I am spending time on the phone actively communicating.

It seems that I am not alone. My friend was also shocked that he was spending over four hours daily looking at his ‘phone screen. Like me, it seemed that he imagined his usage was “maybe an hour a day”

What was more shocking, according to him, was that he doesn’t use social media!

Having looked into this, my research suggests that 4 hours a day is about the average amount of time for adult individuals to spend on their smartphones. I’m pretty sure that all of these people would also be surprised to discover how much time they were spending locked in cyberspace, rather than existing in reality.

No man is an island… Or is He?

Since I discovered the true value of the Apple Screen Time function, I am much more aware of my device usage. The system is self-managing, and it’s simple to configure using the settings menu.

I also use an iPad, and a MacBook Pro computer, so I have set the system up to combine my usage across the devices, so that I get a true picture of how I am spending my time.

Apple iPad with Retina OLED display – Easy to Read, but not for a book at bedtime! Photo Mark Charlwood©

For those of you who use Apple products for the whole family, the app will even be able to show individual family members times, which would be useful to monitor the time that children spend on their phones or iPads.

There is an important factor to this, as there is well-documented and respected research that clearly shows that excessive use of computer screens may be injurious to health.

There are several aspects to this.

Firstly, the display screens of modern computers, smartphones, tablets and e-book readers are backlit by LEDs. This gives a crisper, brighter image, but at the same time emits powerful light in the blue colour spectrum.

Screens bright enough to see even in sunlit conditions Photo Courtesy Senado Federal under CCA 2.0

Fluorescent lighting and the newer LED bulbs being used for environmental reasons also emit light in the blue spectrum, as does the sun.

In our natural environment, the amount of light that we receive regulates our circadian rhythm – our sleep to awake cycle.

As the sun begins to set, the reduction in solar light eventually triggers the pineal gland, seated deep in our brains to produce melatonin, a hormone that controls the sleep-wake cycle.

In most cases, the release of melatonin will cause the individual to fall asleep. As light levels increase at dawn, we wake up.

Melatonin not only regulates our sleep to wake cycle, but in vertebrates, it also synchronises seasonal rhythmicity, and triggers such biological factors such as the time to reproduce, and hibernate. Clever stuff from Mother Nature.

However, using our screens late at night (who hasn’t laid in bed watching a Netflix movie on their tablet?) interferes with our brain chemistry and makes it more difficult to fall asleep and may cause disrupted sleep patterns.

Blue light is also injurious to the retina, and a recent Harvard study concluded that the output of high energy blue light from modern screens may cause eye health problems.

The retina is located at the rear of the eyeball, and is made up of multiple layers of very thin tissue. The retina also contains photo-receptor cells which capture the images of what a person is looking at.

A small proportion of cells, known as Retinal Ganglion Cells are not used directly by our vision systems, but they do monitor ambient light levels, and feed this information into the brain to assist in controlling our circadian patterns (sleep/awake) and for controlling the light response of the eye pupil – dilating it in lower light, and constricts the pupil in brighter conditions.

Very clever!

However, High Energy Visible (HEV) Blue light may harm the retina. Some of the potential damage may be prevented by a group of cells known as the macula. The macula is a tiny yellow area in the eye which absorbs excess blue and ultraviolet light.

Should the yellow pigment become too thin, then blue light can bombard the retina.

The Harvard medical study suggests that after chronic exposure to HEV blue light, (overusing our tablets, phones, laptops etc) there will be a predicted rise in the number of age-related macular degeneration conditions, Glaucoma, and retinal degenerative diseases.

So…

Maybe we should schedule a sterile period each day, during which we have no interaction with our technology. Maybe dump Facebook? Instead of sitting slumped on our sofa, living our lives vicariously through the activities of others, we should go for a walk, or ride a bike.

Maybe use our phone to, dare I say it, make a voice call?

You decide!

Anyhow, just in case anyone finds this article too gloomy, here are pictures of a rabbit riding a motor-scooter, and a dear little fawn.

Go Well!

Categories
Civil liberties Crime English Culture HEALTH internet Mobile Communications Politics privacy Science Security Society Technology Telecommunications Transport Vehicle Safety Wearable Technology Work

The Internet of Things – Friend or Foe?

Who likes history? If you do, then I invite you to take a little journey with me…

Cast your mind back to the early 1990s.

If you were one of the 10% of the UK population that possessed a cell-phone at that time, then you may well have owned one of these – a Nokia 1610.

The Nokia 1610 Cellular Telephone

It was a simple device – able to make and receive telephone calls, and send and receive text (SMS) messages. I was using this model of phone back then, and at the time it was regarded as one of the top phones available.

It had a tiny screen by today’s standards, and was quite bulky. The antenna, whilst small, was still an intrusion, and would often malevolently jam the phone into my pocket.

In 1996, 27% of the UK population owned a PC (In 2017, 88% of us had a computer at home). Mine was a Packard Bell desktop system that I bought from the now-vanished Dixons.

Packard Bell – The workhorse for the British Public in the mid 1990s, Bought from Dixons, long since gone from our High Streets.

I can’t remember how much the system cost me, but I do remember that I was entitled to a Freeserve email account, which I used for a good few years before moving over to web-based systems such as Outlook, Google or more recently Imail.

My home set-up was ludicrously simple. No passwords, or hunting for that elusive Wi-Fi router.

Just plug the Modem into the network port on the PC, plug the other end into the phone line using an adapter, and the system was ready for use.

Old-School. A dial up modem – Looked cool with flashing lights and that wonderful connection sound

Getting onto the internet though, was a whole different matter. This was the heady days of Dial-Up Internet.

Simply open the web browser, and hit the connect button. The auto-dialler inside the PC would dial the number for the Internet Service Provider, and once connected, you would have been treated to the squeals and squawks of the computers setting up the connection.

Ahh, Yes, I remember something similar!


Once connected, the upload and download speeds were truly awful. I well remember downloading a detailed photograph. It appeared line by line, and eventually, after five minutes or so, I got bored with waiting and went downstairs to make a cup of tea. I came back twenty minutes later – and it was still not finished.

Today, with fibre broadband, images appear almost instantaneously!

The internet was pretty simple too. Basic browsers that contained a multitude of adverts, and rather unsophisticated email. Shopping online was in its infancy – eBay had only been started in 1995.

So, the interconnected world really consisted of a computer, hard wired to a modem, and the embryonic world wide web.

The only real risk attached to surfing the web, was that of unwittingly downloading malicious software (malware) or computer virus.

The first computer virus was designed in the early 1970s. It was created as part of a research programme conducted by BBN Technologies in the USA.

Researcher Bob Thomas designed the programme to be self-replicating and was targeted at DEC computers that shared the ARPANET network. This virus was called Creeper.

Bob and his team then designed a programme called Reaper which, once released into the ARPANET, hunted out the infected machines, and then killed the virus by deleting it.

Obviously, breaking into computers was seen as a target of opportunity to the less honest members of society, and viruses started appearing more frequently.

Some were just mischievous, such as the Elk Cloner virus (written by a ninth grader in a Pittsburgh High School in 1981) which upon its 50th opening would display a poem, the first line of which was “Elk Cloner: The program with a personality.”

Others were more malevolent, and were designed to either destroy records and data from the infected computer, steal personal data, record website access passwords and log keystrokes. Ransomware enables the attacker to hijack a computer, and then demand payment to unlock the machine.

The resulting loss of public confidence saw the arrival of cyber-security, specialist organisations that analysed the emerging viruses, worms, trojans and malware and wrote anti-virus software, which could be loaded onto a computer and which could then subsequently scan it for infection and quarantine any suspect viruses into a part of the disc not readily accessible by the user, or by the system.

Fast-forward to 2021.

The internet has evolved – and BOY has it developed! If you are privileged enough to live in a developed country, you may already be using fibre-optic broadband, offering speeds of up to 1 Gigabit per second.

According to recent UK survey Hyperoptic offer a 1GB service for an introductory offer of £45.00 per month!


This is jaw-droppingly fast. To put it into perspective, it would have taken about 3.5 days to download a 4K film (about 2GB) using a 56kbit dial up service.

My previous broadband was copper-wire based, and the fastest speed I ever achieved for a download was 8Mb/sec – and that same 4K film would have been delivered to me in 35 minutes.

My latest broadband is totally optical and is Fibre-to-the-Premises (FTTP) and my download speed is a minimum of 71Mb/sec – that 4K movie is now mine in about 4 minutes.

One of the major advantages of broadband, is that unlike a dial up service, the system is “always on”. The old modem has been replaced with a router, which essentially does the same job, but additionally acts as a network hub, through which multiple devices may be connected simultaneously.

BT Hub – A home router, Wi-Fi enabled, with 2GHz and 5GHz Channels

Whilst is it possible to connect equipment to the router using a network cable, most routers offer Wi-Fi connection, and this allows several Wi-Fi/internet-enabled devices to connect to the internet simultaneously.

With a sufficiently fast connection, it is possible for SWMBO to watch a movie on Netflix, whilst I catch up with a friend on a video call, or listen to the internet radio.

Why am I rambling on about this?

Well, technological advances never stop, and there is much publicity about the new 5G (5th generation communications network) which will increase the speed and capacity of the internet even further.

In my previous article, “Who is Driving YOUR Car?” I explored the embryonic Intelligent Transport System, which relies on internet-enabled vehicles and sensors in the fixed transport network, communicating with each other to provide optimised traffic flows and traffic safety management.

This is only made possible with 5G communications and ultra-fast internet systems, and the Internet of Things (IoT)

The Internet of Things is the medium through which our emerging “Smart Society” will operate.

In essence, the IoT consists of items that have the capability to connect to the internet, and communicate and exchange data with other similarly enabled things. These “things” may have sensors, software and other systems to support their intended purposes.

It could be a device as simple as a smart lightbulb that is able to be activated by a smart assistant such as Alexa or Siri, or from a suitably equipped smartphone – located perhaps many miles away.

Such items are already used in intelligent Building Management and Control systems, which employ an array of interconnected sensors to monitor heat and humidity, occupancy levels, lighting, lifts (Elevators for my US readers 😁) and security within a building.

Intelligent Healthcare uses the IoT to monitor medical data such as cardiac performance and blood pressure, or blood glucose levels. This enables improved management of an individual’s medical conditions. Significant research is being conducted in this area, and there are already several emerging disciplines and specialities.

The Internet of Things is also used in industry and manufacturing, to monitor and control processes – making use of internet-enabled sensors.

We are now seeing “Smart Homes” being built, which use the same type of Wi-Fi-connected IoT devices to control home environmental systems.

Smart Home hub

I imagine that a fair percentage of you may well be protecting your property with Closed Circuit TV Cameras. It’s probable that most of these cameras will be Wi-Fi-connected to your home broadband – and from there out onto the web.

A Wi-Fi enabled Internet CCTV Camera – A hackers back door into your systems? Photo ©Mark Charlwood

Maybe some of you will have an App on your smartphone or tablet that enables you to remotely view the camera feeds.

Smart speakers such as Amazon’s Alexa, Apple’s Homepod and Google’s Home are wirelessly connected to home networks, and are continuously monitoring their environment for their wake-up command (such as “Alexa”)

Smart doorbells enable us to see who is at the front door using integral video cameras and transmitting the footage over the internet via the home router and to an app on a smart phone.

Smart appliances, such as Samsung’s Smart Refrigerator now offer us the ability to manage our food.

Smart Fridge – Whatever Next?

An internal camera within the fridge compartment enables the user to view the contents by using a smart phone. The system will also monitor food expiry dates, without the door being opened, thus saving power.

Some models also enable groceries to be ordered via the fridge – a rather redundant feature in my opinion, as you can order your groceries online from your phone, tablet, laptop or PC.

Or, for the truly bold and adventurous – take a risk, and actually go into a shop and buy your groceries.

A large LCD screen is provided in order to display a family calendar, and if you really haven’t got enough tech in your home, it’s also fitted with a 5W Stereo sound system to play your favourite music tracks.

Poor Alexa… She may feel quite outranked by the domestic white goods!

Smart Washing machines are able to connect to the home network, and may be controlled remotely using an app, and are able to automatically sense loads, apply the correct dose of detergent, and add the optimal amount of water.

On some models, the best programme for the laundry load may be selected by filling in a few pieces of information on the app.

I’m sure it won’t be long before your garments will be fitted with a passive RFID tag, or a label barcode, and the machine will scan the items as they are loaded, and then set the correct wash programme.

Should an item that is not compatible with other items in the load be added inadvertently then the machine will inhibit the washing cycle from starting until the guilty culprit is removed.

No more business shirts stained girlie pink then!

Result!

As a society, we are all used to smart watches, and fitness trackers, (which all fall within the scope of wearable technology) and have become very complacent about the interconnectivity with our other tech.

And this is where the real problem lies…

Security MUST be one of your top priorities these days. I have removed my profile permanently from Facebook, as the platform discretely harvests everything I “like” and every comment I make. My preferences and personal data are then sold to other organisations, without my permission and regardless of the ethics involved.

Think about why Google and Facebook are free! There really is no such thing as a free lunch.

Most of you will already be protecting your data and PC behind an encrypted firewall, with passwords, multi-factor authentication, and PIN codes. In all probability, you will be paying for some kind of anti-virus protection which will (hopefully) prevent your data from being compromised.

The IoT makes this a lot more difficult.

The processing power inside some of the connected devices, and to an extent, their size may well prevent them from having all but the most basic of security protection – if any.

The CCTV you bought to protect your home may well be being used by the manufacturer, or a malicious hacker to access a backdoor into your router, from where it can monitor data passing up and down your comms link.


So, all of these innocent devices are hooked to the web via your router.

Lots of individuals I know never both changing the default password supplied with their devices, and will happily discuss bank details, finances, and other personal details within “earshot” of their smart speaker.

So, nasty hacker chap decides to wage an attack on his ex-employer. By harnessing the combined IoT devices of many households, and requiring all of them to connect simultaneously to the target company’s website will cause it to crash.

This is an extreme example of a Distributed Denial of Service Attack (DDoS), where innocent PCs and devices are hijacked to overload the target’s website.

Many large and respected companies have been attacked in this manner, despite having the financial clout and technical expertise to surround themselves with multiple layers of digital security.

In 2017, Google came under a sustained DDoS attack, originating from China, which, according to Google, lasted for up to six months.

In 2020, Amazon Web Services (AWB) was taken down for three days following a similar, yet more sophisticated attack.

Internet security expert Brian Krebs was attacked in 2016, when his website was assaulted by the Mirai botnet, executed by about 600,000 compromised and suborned Internet of Things – such as Internet CCTV cameras, home routers, and other simple IoT devices.

This may be the tip of the iceberg.

Cisco, the internet systems company predicted in its annual report (2018-2023) that sophisticated DDoS attacks will double from the 7.9 million in 2018 to 14.5 million in 2022.

Now the truly chilling bit…

In our increasingly technological world, we rely on the internet in so many ways – from grocery shopping to building control, from home banking to healthcare. Connected vehicles – not just cars, but ships, aircraft, tankers, trains.

As I have said, many of these devices are so simple and un-assuming, that we don’t regard them as a potential threat.

That simple fitness tracker that you wear all the time. The silly old fridge, just sitting there in your kitchen, keeping your food safe and edible. The CCTV that you use to monitor your car in the drive.

The ease and convenience with which you access your bank to pay a bill. The ability to have a video call with your dear old Mum from miles away.

And yet, in the stygian, gloomy murk of the deep, dark web, there lurk hackers, thieves, and criminals. Hackers who are willing to mount cyber-attacks from as little as 7.00 US$ per hour.

Foreign states, and terrorist organisations that are willing – and able – to hijack your IoT devices to wage an attack on society.

Imagine, if you dare – a world where the bad guys can hack into your car, and disable the brakes.

A world in which someone can access your pacemaker, and shut it down…unless you pay a ransom.

A world in which a hacker can eavesdrop on your home, and record everything that you say and do, and record everything about you?

It’s not as far-fetched and dystopian a reality as you think!

Go Well!

Categories
Civil liberties Driving Electric Transport Mobile Communications Motorcycling Motoring Music Nostalgia Science Society Technology Transport Travel Vehicle Safety Vehicles

Who is Driving YOUR Car?

Those of you who are of a “certain age” may well remember the song Car 6-7, the lyrics of which tell the sad story of a taxi driver who has split up from his girlfriend, and is turning down a pick-up from control, as it’s the ex-girlfriend.

That was back in November 1978, and the old-fashioned two-way VHF radios used in taxi cabs have been largely been updated, and to a certain extent have been superseded by smart phones and booking software.

Typical 2-way VHF transceiver as used by mini-cab companies in the 1970s and 1980s

We have all become used to very sophisticated communications systems; Bluetooth earpieces and microphones, Wi-Fi internet connections, cordless phones and smart speakers such as Alexa.

Modern cars are no exceptions. My car has a Bluetooth system that will support two mobile phones; My 2013 motorcycle has the same. 

Very sophisticated.

Well, it was in 2017 when it rolled off the production line in Kvasiny in the Czech Republic.

Kvasiny in the Czech Republic – the home of the Skoda Yeti…

But things are changing fast, and we are now moving into the world of Intelligent Transport Systems (ITS).

ITS is a futuristic totally integrated transport system that uses an infrastructure of sensors, communications links, artificial intelligence and algorithms to monitor and manage traffic flow, safety and incidents. Data collected may also be used to help design safer and more efficient transport systems, which may be optimised for different conditions.

We are already using a very basic kind of ITS; We have CCTV cameras that remotely monitor our motorways and road networks. Automatic Number Plate Recognition (ANPR) cameras that are able to identify and trackthe driving behaviour of a specific vehicle, and monitor entry and exit times of vehicles using private car parking facilities.

ANPR and CCTV cameras…

We have under-road systems that monitor the volume and speed of traffic[1] – (You may have wondered about those geometric grids in each lane of the motorway placed at regular intervals?), speed-monitoring enforcement cameras mounted on overhead gantries, and Variable Message Signs (VMSs) 

All of these systems will look like they came out of the stone age when compared with what’s coming very soon.

Intelligent Transport Systems combine data that comes from a variety of sources. 

One of the sources of dynamic data are vehicles that are actually using the road network.

Cars have recently become a lot smarter. My ancient vehicle (4 years old) is just about capable of talking to my smart phone. 

New vehicles will be able to communicate on many different levels.

Imagine, if you will, a car that is able to independently communicate with other, similarly equipped vehicles.This is the most basic system, referred to as V2V

Cars are already fitted with Autonomous Driver Assistance Systems which include obstacle detection, autonomous emergency braking, lane departure warning systems, and adaptive cruise control. See my previous article entitled Autonomous Vehicle Safety Devices – Do you turn YOURS off? for details.

Maybe the car ahead detects an obstacle, and applies the emergency brakes. This information in instantaneously broadcast to all following vehicles, and this in turn allows them to begin braking – before a human driver is even aware that an emergency exists.

Vehicles may also be designed to interact with the infrastructure (traffic signals, traffic density and speed monitors, road condition sensors etc). This is known as V2I. 

A V2V/V2I equipped vehicle starts to lose traction on a wet road, and begins aquaplaning. A message is sent from the vehicle to other vehicles, and also to the fixed highway infrastructure. The infrastructure may then automatically activate warning signs and reduce speed limits accordingly.

This is not science fiction.  This is Science Fact.

Infrastructure sensors that continually monitor the depth of water on the road surface and the road surface temperature already exist, and are integrated into the ITS. 

The UK’s Vehicle and Operator Services Agency (VOSA) have been operating a sophisticated network of subsurface sensors that are capable of accurately detecting overloaded Heavy Goods Vehicles. This system is known as WIMS, short for Weight In Motion Sensors. This uses induction loops and special sensors to detect the weight being carried by each axle of the truck in question. When combined with ANPR cameras, the system will identify the vehicle, and also be able to calculate whether it is overloaded, and whether it is complying with the speed limit.

Other car communications systems enable the vehicle to exchange data with the wider internet of things, and may also inter-exchange with other transport modes. This is known as Vehicle to Cloud (V2C). This would enable a vehicle to be able to communicate with trains, aircraft ships and exchange other relevant data.

Lastly, cars will also be able to communicate with pedestrians. (V2P). This would allow vehicles to update pedestrians on their status, and speed of approach. Such information could be received by the pedestrian by using a smart phone. 

Cars, trucks, buses, motorcycles, farm vehicles and even bicycles will all become part of a communicating interactive network, and ultimately connected to the global internet of things.

Combine the automated on-board driver assistance systems with the benefits of a smart, thinking and proactive transport network, and road safety may show some dramatic improvements.

Currently in the UK, about 40% all vehicle accidents were as a direct result on a driver “failing to see” the other vehicle. 

In our brave new world, your car probably won’t let you pull out of that junction as its already identified an approaching car, assessed the risk, and calculated that there would be a collision! That’s assuming that both cars are V2V/V2I equipped.

Old duffers like me driving a 2017 model will still have to rely on the Mark I eyeball, and the basic training received nearly 45 years ago.

The old saying that the best safety device in a car was a well-trained driver may no longer be true.

Live Long and Prosper…


[1] MIDAS – Motorway Incident Detection and Auto-Signalling. An Induction loops system that senses a vehicles presence using magnetism.

Categories
College Deafness English Culture Mobile Communications Science Technology Trains Transport Wearable Technology

Am I reading the Signs Correctly?

A sign of the times…

A few years ago, I had to attend a meeting in the London offices of the CAA, and rather than pay the congestion charge, and then fight it out with the city traffic, I decided to catch the train to Waterloo, and then use a Boris Bike to cycle the last mile to the office.

Boris Bikes – I love using these! Cheap, and only a seven minute cycle from Waterloo to Work!

It was a lovely sunny morning as I stood on the platform waiting for the 09:09 Liphook to Waterloo service.

The 0909 from Liphook to Waterloo. A mobile office – A mobile reading room…

The carriage that I boarded was almost empty, and I chose a table seat, and sat by the window, and took a sip of my coffee.

I smiled. I had bought my coffee from the young, attractive blonde woman who operated the coffee van outside the station.  

I had flirted outrageously with her, and she had charmingly flirted back, despite the fact that I am probably double her age (at least!). No wonder she always has a queue for coffees. She is always cheerful and happy regardless of the weather. And the coffee is great too, so a win-win for everyone.

The best coffee for a pre-commute journey, and served with a smile and a flirt… what more could a chap want for?

The Liphook train is never in much of a hurry to get to Waterloo. It meanders through Haslemere, Guildford and Woking, stopping at the many small towns and villages that constitute commuter-land.

By the time it clatters into Godalming, my carriage is starting to fill up. In compliance with the average Brits’ reluctance to engage with any strangers, many people passed through the carriage, despite the fact that there were three empty seats at my table.

Eventually, three young women shyly sat with me. I budged over to make room and reassure them, and fished my battered paperback book out of my bag. 

They all pulled files and folders out of their bags, and set them on the table, and busied themselves with their textbooks. Obviously, University of Surrey kids on their way to a lecture.

I returned to my book, and attempted to read, but something was not quite right.

It took me five minutes or so to realise that they were not making much noise, and I surreptitiously glanced over at them.

It suddenly struck me that these young women were all deaf, and were enthusiastically signing to each other – their hands moving constantly; some gestures as soft as butterflies, some more direct chopping movements.

British Sign Language being used to translate the Welsh Assembly’s COVID Briefing.

One of them caught me looking at her, and she fired a smile at me that was as bright as the sunshine pouring into the carriage, and I found myself disadvantaged in not knowing how to respond, and all I could do was offer a grin back. Embarrassing or what?

They departed the train at Guildford, still signing happily. I watched them wandering off up the platform as the train finally decided to recommence it’s groan towards Woking.

This did get me thinking. I had felt quite disconnected from three fellow human beings. If they had required my help, they would have had to write their request down, as I couldn’t sign, and I never heard one of them utter a single word.

I promised myself that I would learn British Sign Language one day.

Well, like most people, one day has still never come, and I still don’t know how to sign. 

Good news is now on the horizon, that will enable those who are unable to hear, to communicate with those that can’t “speak” in sign language.

It’s the white knight of wearable technology to the rescue!

There is now hope for easy communications between those that sign, and those that can’t. The communications barrier has finally been breached!

Recent research published in Nature Electronics shows that wearable technology is able to offer a highly accurate real-time translation of sign language into speech, and delivers translations that are about 99% accurate and with a translation time of less than a second on average.

To put it simply, Yarn-based stretchable sensor arrays (YSSA) are used to track the movements of the hand, and will monitor the position of fingers, thumbs, and the movement of hands through the air. 

These clever sensors are lightweight, cheap and highly sensitive. They offer stretchability and are durable and hard wearing, so they are ideal for incorporation into a wearable tech system.

Using artificial intelligence, and a specifically targeted algorithm it is possible to calculate the underlying meaning of the hand gestures and movements.

To put it simply, the sensor array is woven into a lightweight simplified glove, which flexes with the movement of the hand, fingers and thumbs. The movements of the glove generate electronic signals that are processed by the receiver and then translated into the speech equivalent.

To add even more accuracy, it was possible during the tests to stick a YSSA sensor to the side of the mouth, or near the eye of the wearer to monitor facial expressions, all of which are essential subconscious enhancements to language.

The Yarn-based Stretchable Sensor Array, in the form of a lightweight glove.

All of the data is then transmitted to a very small wirelessly-connected receiver which is worn on the body in an inconspicuous location. Once the data is received, it may be transmitted to a software application on a smart phone, and the “app” will convert the data to human speech and synthesise the words as audible and recognisable speech. 

According to the report, the system is 99% accurate, and has a gesture-to-word processing time of less than one second.

At the moment, the system is in its infancy, and is a bit agricultural to look at, but in time, it is possible that the components will be small enough and discrete enough to be worn confidently by a person with a serious hearing impairment.

It will also ensure that people like me won’t miss out on having our lives enriched by being able to converse easily with someone who signs.

How fantastic is that?

The photo that I have chosen as the cover image, is of a sculture on a wall outside a school for the deaf in Prague.

It translates as “Life is beautiful, be happy and love each other”

The sculture was created by Czech Zuzana Čížkové. Photo by ŠJù under CCA-SA 3.0

Go Well!

Categories
Aircew airlines aviation Climate change Econonomy Environment Flight pilots Science Technology Transport Travel Uncategorized Vehicles Work

Greening Aviation – Not as Simple as it Sounds

According to recent research conducted by the University of Reading in the UK, many tonnes of fuel could be saved by airlines, (and therefore many tonnes of greenhouse gases) if they planned to always fly in favourable winds whilst crossing the Atlantic.

The study found that commercial flights between New York and London last winter could have used up to 16% less fuel if they had made better use of the fast-moving winds at altitude.

New satellites will soon allow transatlantic flights to be tracked more accurately while remaining a safe distance apart. This opportunity could allow aircraft to be more flexible in their flight paths, in order to more accurately follow favourable tailwinds and avoid headwinds, offering the aviation sector a cheaper and more immediate way of cutting emissions than through advances in technology.

The report stated: “Current transatlantic flight paths mean aircraft are burning more fuel and emitting more carbon dioxide than they need to”.

“Although winds are taken into account to some degree when planning routes, considerations such as reducing the total cost of operating the flight are currently given a higher priority than minimising the fuel burn and pollution.”

Boeing 747-400 pulling Contrails at high altitude. This fabulous photo was taken by Sergey Kustov

This needs to be put into context.

Way back in time, I used to create flight plans professionally. This was done by hand and was sometimes quite time consuming, and required careful study of aeronautical charts, upper air weather, including icing levels, and any forecast areas of turbulence.

A Transatlantic Chart showing the Entry and exit waypoints for the North Atlantic Track System

The charts would also be checked to see the locations of forecast Jetstream activity.

A quick explanation here about Jetstreams.  Jetstreams are caused by two factors. Firstly, solar heating, which causes massive air movements, combined with the effects of the earth’s rotation (The Coriolis Effect).

Image courtesy of NASA

At lower levels, these air movements are known as Trade Winds, and two hundred years ago, clipper sailing ships used them very effectively to transport goods relatively quickly around the globe, hence the name.

Most weather phenomena is generated in the troposphere, which extends from the surface up to high altitude (30’000 feet at the poles, and 56,000 feet at the equator), and it is at these upper levels that we find the jetstreams.

Jetstreams are defined as winds with a minimum speed of more than 70 knots (80 mph), and often they may exceed 220 knots (250 mph) and so it makes economic sense to make use of them.

This has been recognised by the aviation airspace regulators, and specific routings that take advantage of the jetstreams have been in place for many years.

Typical Jetstream activity over Euope.

Each night, weather data for trans-oceanic flights is analysed, and tracks are optimised to use the flows sensibly.

Flights crossing the Atlantic use a system known as NATS (North Atlantic Track System). In simple terms, a number of tracks are generated for both easterly and westerly traffic that will enable aircraft to benefit from a tailwind, or at least a reduced headwind.

These tracks will move north and south over the Atlantic according to the weather and the predicted positions of jetstreams; sometimes tracks will start to the north of Scotland, and terminate in the far north east of Canada.

On other occasions tracks will run to the south of the UK, and cross the southern part of the north Atlantic joining the continental air route systems as far south as the Canadian/US Border.

Typical NAT Tracks. Westerly tracks, showing available flight levels for each alphabetically-identified track.

So, flights across the Atlantic already have some basic fuel saving principles built in advance. The same system operates for flight crossing the Pacific Ocean, known as PACOT tracks.  They run between the western seaboard of the USA and Japan and Asian destinations.

However, times move on, and grey-haired aviation expertise has been replaced in almost every arena with technology.

Modern computer-based flight planning systems are extremely sophisticated, and use some advanced algorithms to plan with even better accuracy.

Consider this.

Every nation has the right to charge a fee to every aircraft that uses its airspace. Airspace charges may be based on the time that the flight remains within that state’s territory.

So, modern flight planning systems will look at every aspect of the flight. It will perform calculations that compare fuel burn with overflight charges.

Sometimes, whilst flying in a Jetstream will burn less fuel, it may mean that the flight will pass through airspace with relatively expensive overflight charges. If the overflight charges amount to more than the cost of fuel, then the system will plan to use the cheaper route, and therefore save money overall.

Airlines also use a system known as Cost Index to further optimise the flight costs.

This is basically a system that compares the direct operating costs of the flight, with the cost of the fuel being used. If the direct operating costs (crew wages, navigation charges, cost of galleys and airframe hours – affecting the amount of maintenance required) are more than the cost of fuel, the system will plan to fly faster, burning more fuel in order to get on the ground faster. Conversely, if the fuel is more expensive than the direct operating costs it makes sense to fly slower, burning less fuel.

Airlines are extremely cost conscious, and low-cost carriers will do everything they can to reduce and eliminate costs wherever possible. For example, Ryanair removed paper safety cards as they wear out and need replacing. Now, their safety information is riveted to each seatback.

Ryanair Boeing 737 – and Safety Cards riveted to the seatbacks!

Some carriers do not serve peanuts, as if they drop into the seat mounting rails, they take time to remove, and time is money.

So, persuading airlines to always optimise their routes and use high speed Jetstreams to the fullest extent may take some time.

Stay Safe…

Categories
Driving education English Culture Motoring Science Technology Training Transport Vehicle Safety Vehicles

Autonomous Vehicle Safety Devices – Do you turn YOURS off?

If you drive a fairly recent car, it will, in all probability, have a number of added features to make driving not only a more enjoyable experience, but also a safer one.

When I started driving in the mid-1970s, driver safety systems – apart from the most basic, were virtually non-existent.

I started my driving career at the age of 16 with a 1965 Austin 1100.

Same colour, same condition – different registration! This is a 1966 model

Minimal controls, no radio to distract, and hydrolastic suspension, which for those of you that are not familiar with it, made performing hill starts a simple manoeuvre.

A four-speed gearbox, and a disproportionately large steering wheel by todays standards. (This was to compensate for the lack of any sort of power assisted steering).  

My parents believed this to be an ideal car for a learner.

But was it?

It had absolutely no safety features. Not even a collapsible steering column! In vehicles without such a device, in a frontal crash, the impact and subsequent deformation of the body shell and chassis could drive the steering column backward, in many cases impaling the driver to the seat.

Austin/Morris 1100. Simple, uncluttered, yet maybe deadly!

Interestingly, a patent was filed for a collapsible steering column way back in 1934, but it wasn’t until 1959 that Mercedes Benz fitted them to its MB W111 Fintail. We had to wait until 1968 before Ford fitted them as a standard item to all new cars.

My car did have one quite advanced feature – it was fitted with disc brakes on the front wheels, and drum brakes on the rear wheels, making it almost unique for a small, mass-produced car in the early sixties.

Let’s move on to crumple zones. My little car was built quite simply, and any energy created in a crash impact would be transmitted throughout the whole car until it dissipated. Modern cars are now designed with front and rear panels that deform in a controlled manner, spreading the loads and therefore dissipating the energy to survivable levels before it reaches the occupants.

Volvo introduced longitudinal steel bars to protect the occupants from side impacts, a system that Volvo imaginatively called SIPS, Side Impact Protection System. That was back in the early 1990s, and now all modern cars are built with a rigid passenger safety cell which, amongst other things, prevents the engine from being forced into the passenger compartment.

Losing control of a vehicle causes many accidents. The moment that wheels lock up under heavy braking, is the moment that the driver effectively becomes a passenger, and the skidding car has an uncontrollable trajectory, potentially leading to an impact.

The aviation industry has been using anti-lock brakes since the 1950s when Dunlop invented the Maxaret system, which was fitted to various aircraft types. By preventing the wheels locking up, aircraft landing distances could be reduced by up to 30%, and the use of the system extended the life of tyres considerably.

Vehicle engineers weren’t slow to recognise the opportunity to enhance car safety, and in 1966, the Jensen FF Interceptor became the first production car to be fitted with mechanical anti-lock brakes.

Jensen FF Interceptor – 4 Wheel Drive, and the first production car with Anti Lock Brakes

Modern systems are fully electronic, and are so sophisticated that they can work in conjunction with electronic stability systems to reduce brake pressure on one wheel, or even redistribute the brake effort from front to rear, or even side to side to ensure that the driver remains in control.

Other safety features are less glitzy, including the humble padded dashboard and flexible sun visors, to head restraints and laminated windscreens, but I am sure they have all made a positive contribution to reducing post-impact injuries.

Air Bags and Air Curtains, Seat belt pre-tensioners (to tighten the lap-strap within milliseconds of an impact being detected) and tyre pressure monitoring systems play a more active role in saving lives.

Air Bag Deploying during a Crash Test

Safety device development continues at high rate.

Due to the ever-increasing sophistication of vehicle on-board computer systems, and better understanding of accident causal factors, there are a now a complete suite of Advanced Driver Assistance Systems (ADAS) that are being fitted into new cars.

Lane Departure Systems that monitor the vehicles distance from lane markings warn the driver (and in some models will intervene to bring the car back into its own lane) of a deviation from the chosen lane.

Tesla instrument binnacle, showing lane departure system- Photo copyright Ian Maddox

Blind Spot Monitoring uses a system of sensors and cameras to detect vehicles in adjacent lanes and activates a warning – either in the external door mirrors or within the driver’s area of vision. Some of these monitors will also activate when the car is placed into reverse gear, and will warn of approaching vehicles or pedestrians. This enables cars to be safely reversed out of car parking spaces.

Blind Spot Monitoring System – Mirror mounted camera. Photo by Emancipator

Active Cruise Control (ACC) may be set up to automatically maintain a certain speed and distance from vehicles in front. and will automatically decelerate the car if the car in front slows down. If the spacing limit is breached, then the system will communicate with the braking system to apply the brakes. Drivers will also be warned by an audible alarm and a visual prompt to intervene and apply the brakes.

Adaptive Cruise Control Display. Image courtesy Audi AG

Driver Monitoring Systems can measure the level of arousal and alertness of the driver, using eye tracking technology, and driver steering inputs. If the driver begins to exhibit symptoms of drowsiness or incapacitation, the system will activate, generating a loud audible warning, and in some cases the seat or steering wheel may vibrate.

Should the driver not react to an obstacle under these circumstances, the car systems will intervene and take avoiding action.

Many accidents occur due to breaches of the speed limit, so ADAS provides another system – Intelligent Speed Adaption to assist in preventing a driver from exceeding speed limits.

These systems may either be active or passive in nature; passive ISA will simply warn of an exceedance, whilst active ISA will either exert a deceleration force against the accelerator pedal, or will reduce engine power and apply the brakes.

My current car was manufactured in 2017. It has standard cruise control, electronic stability control, ABS and is littered with airbags.

My only additional Driver Safety Systems are manually optimised…

I use the mark one eyeball and good driving practices that were ingrained in me during my driver training. Mirror Signal Manoeuvre when changing lanes or joining a motorway. A good habit picked up from being a motorcyclist – I actually turn my head and look over my shoulder when lane changing.

Despite all of these advanced safety systems being available, many people are ignorant of the systems fitted to their cars.

In part, this is due to sales staff at dealerships being either unwilling, or unable to explain satisfactorily how the systems work, the advantages and practical use of the systems, and the limitations of the systems when in everyday use.

Secondly, having checked the Driver Standards and Vehicle Agency website, and reviewed the UK Driving Test Syllabus, there appears to be nothing in the course to ensure that drivers have an understanding of integrated safety systems.

Unless Approved Driving Instructors teach the practicalities of Advanced Driving Assistance Systems, and their limitations, drivers will remain in ignorance of the benefits that these devices offer.

According to a recent survey conducted by Autoglass, 41% of drivers with ADAS equipped vehicles intentionally disabled safety devices such as Autonomous Emergency Braking and Lane Departure devices!

The survey further revealed that 24% of those drivers responded that they were not provided with any information about the importance of these features and how they work when they had the vehicle handed over to them.

55% were unaware that these safety-critical systems need to be re-claibrated following a replacement of windscreens of repair of panel damage.

67% stated that they believed that more education and training is needed before driving ADAS-equipped cars.

The best safety device in every vehicle is a well trained driver. A well trained driver would not disable safety systems designed to save lives.

Maybe its time to start the training?

Categories
English Culture HEALTH Interview Living Organ Donation Organ Donor Organ Transplant Science

Giving the Ultimate Gift – The Gift of Life

A few years ago, SWMBO’s sister and her husband came to stay with us in rural Hampshire. They were taking a break from their round the world travels in their motorhome.

They had made their momentous decision to spend the rest of their lives travelling around the world, sampling local cultures and cusisines, scuba diving and backpacking – and all whilst doing this in a responsible and sustainable manner.

Trudy – Marianne and Chris’s home for their global trekking TREAD the Globe! Resting in my front garden.

This article isn’t intended to tell the story of their travels. That may be done by visiting their website Tread The Globe or visiting their YouTube channel here. I can say that they are definitley achieving what they set out to do.

Marianne and Chris Fisher – Now Wandering the World in Trudy. This is not how they normally dress….

This article is actually all about Marianne, my Sister-in-Law. (Sorry Chris!)

The word awesome is really overused these days. it seems that a nice meal is awesome. A film is awesome. Is this overkill?

When I use the term to describe Marianne Fisher, it’s actually well-deserved.

Why do I say this?

Well, Marianne took the astonishingly brave decision to become a living organ-donor, and gift one of her kidneys to a very seriously ill friend.

As she was staying with us, she was a legitimate (and captive) target for me and I used the opportunity to ask her a few questions about what was involved in her decision and with her permission to share it in an article on my website.

Marianne and SWMBO. Overlooking the river in Bridgnorth, Shropshire, UK

Now, I’m no Michael Parkinson or Jay Leno, but I think I managed to do a reasonable job…

A shaft of gloden sunlight streamed through the window, illuminating the compact living area of Marianne Fisher’s Motorhome, bathing us both in a warm yellow glow. Looking round the small area, I was having trouble visualising Marianne and Chris giving up all of their possessions and travelling the world in such a small vehicle.

For goodness sake! – my postman drives a bigger van!

Leaning back into the small sofa, Marianne smiled impishly, and said: “You better crack on then!” so I duly obliged and ‘cracked on’.

The first thing that I really wanted to know was what led her to make the momentous decision to become a living organ donor?

A serious look flits across her face, as she don’t switch tenses explaining to me that her long-standing friend – let’s call her Jane, had suffered from serious health problems for almost all of the thirty years she had known her. 

In a quiet voice Marianne continued, telling me that Jane had been the recipient of a kidney and pancreas transplant some eighteen years previously, but two years ago, the transplant started failing.

This resulted in her becoming diabetic, needing permanent regular dialysis. She had been placed into a medically-induced coma to increase her chances of surviving a successful medical intervention should another replacement kidney be found.   

“That sounds very serious – what happened next?” I prompted.

Regarding me levelly over the rim of her mug, she continued, explaining that there was another important factor that needed to be considered.

Jane was dying.

She was in such a fragile state of health, that a deceased donor was no longer an option, and only an organ from a living individual could be used.

Whilst Jane had a sibling, he too was in a fragile state of health, and Jane’s parents, whilst willing, were considered too old for the procedure to conducted safely.

Jane also had a fifteenyearold daughter, who would be left an orphan if no-one could be found.

Marianne appeared to brace herself, and told me that her own Mother passed away when she was just six years old, and that she subsequently went through a dreadful period which evidently still affects her today.

“I couldn’t let her go through that,” she murmured. So, she asked the medical team at Guys Hospital whether she could offer one of her kidneys to Jane.

“How did Chris take that decision?” I asked.

“I didn’t tell him at that point,” she said. “I needed to have all of the information before I wanted to discuss it with him.”

She went on: “I did tell him once I had that knowledge, and could answer his questions and needless to say, he was very concerned – not only for my safety but also for our family’s welfare.”

“Were you worried as well?” I asked, taking another gulp of my coffee.

She laughed. “Not at that point, because I didn’t really think it would happen.”

“So, you weren’t frightened by the enormity of what you were offering to do?”

She absently pushed the opened packet of Rich Tea biscuits towards me, and I welcomed the brief distraction whilst she gathered her thoughts.

She carried on, explaining to me that the transplant team at Guys Hospital were, “absolutely fantastic”, and took the time to explain patiently every aspect of the surgery, and to reassure her continually that she was able to back out at any time.

Guys Hospital – Treating the sick since 1721. Not in this building though!

“What worried you most about the procedure?” I asked.

“My biggest fear was that I would end up having to wear a colostomy bag should the operation not go as planned, or that I would react unfavourably to the anaesthetic.” .

The sun had begun remorselessly advancing towards dusk, and the shadows were slowly moving across the small dining area, as I asked how she had prepared for the other issues, such as only having one kidney left to survive on.

Drawing her knees up under her chin, she told me that she had conducted a lot of personal research into organ donation, and had checked things including post-surgical survival rates, bacteriological infection rates, statistics for Guys Hospital, and probably most importantly, whether she be able to continue to enjoy her passion of Scuba diving.

She also discussed all of this with Chris, who, whilst worried, knew that he was dealing with an unstoppable force – so fully supported her decision, as did her sons.

“So,” she summarised, “My boys were off my hands, and living adult lives, my chances of living life as normal were very high, and Jane was dying. So, I was going to do it.”

That is what happened. Marianne underwent surgery in August 2017. After a short time recuperating in Hampshire, she was soon given the all-clear to Scuba dive, and flew to Borneo that autumn to swim with turtles.

And Jane? 

Well, Jane is off dialysis, and is now actively improving her health with physiotherapy, swimming and enjoying quality time with her daughter.

Marianne stood, as if to leave. “One last question?” I asked.

She raised an eyebrow, saying “Go on.”

“What would you say to anyone who is considering becoming a living organ donor?”

Laughing, she said: “That one is easy. Talk to someone who has done it, as it’s a huge decision, and they will need lots of love, guidance and support.”

I picked my notebook up, realising that I hadn’t written a thing in it, and shoved it back in my pocket as I stepped down from the camper van, and walked back into the early evening sunshine,

The word awesome is not one that I use often, but in this case, it sums this lovely lady up.

Marianne – You Rock!

Go Well…

You can follow Marianne and Chris’s travels by visiting treadtheglobe.com

Categories
Airport aviation Climate change Corona Virus Councils COVID 19 cruising Cycling Driving Ecological Econonomy Electric Transport English Culture Environment Financial Flight HEALTH internet Local Authorities local economy Motoring Movies Music Panic Buying Politics Science Society Technology Trains Transport Travel Vehicles Work

Coronavirus – The Catalyst for Global Change?

Unless you have been living on the Cook Islands for the last few months, you will have heard of Corona Virus, now known as COVID 19.

The virus is officially a global pandemic, and is now rampaging across every continent, leaving a trail of dead.

Here in the United Kingdom, we are in a state of national emergency, and state-sanctioned lockdown is in effect, with only absolutley essential journeys authorised. All retail shops except those selling essential supplies such as food, maedicines and perhaps bizzarely, alcohol are closed.

The London Underground has shut stations across its network, and passengers figures are plummeting.

Stations shut as a result of Coronavirus

Working at home has been the norm for many workers. As a result, the economy is in freefall, with the retail and hospitality sectors being worst hit. Clubs, pubs, cinemas, churches, sports centres, museums and public buildings are now all closed for the immediate future.

The aviation and maritime sectors have been quick to feel the impact of travel restrictions, and many airports are struggling as flights have become virtually non-existent, passenger traffic stagnated, and many airlines now trying to mitigate their losses by flying freight.

Flight Radar 24 – Screenshot showing flights in South East England. This was taken mid morning on the 13th April 2020. This airspace would normally be teeming with traffic, given that this is a Public Holiday in the UK.

Whilst the global shutdown is severely damaging both our manufacturing and financial economies, we are reaping some form of benefit; pollution levels have dropped across the planet, and air quality is improving.

Imagery from the Copernicus Programme’s Sentinel 5P satellite. The left hand image shows Nitrous Oxide pollution over France and Italy. Darker Red is higher levels of pollution. The right hand image shows how the levels and extent have reduced throughout the month of March 2020

It’s not just transport that contributes to atmospheric pollution – industrial and manufacturing activities have fallen across the UK and Europe as countries shutdown their economies to fight the coronavirus pandemic.

This shows that it is possible to stop climate change, but the societal costs are far too high to make this acceptable.

I do believe that when the virus is contained or burnt out, we will emerge from lockdown and social distancing as a changed society.

So, what may happen?

Many firms that up until recently were resistant to their employees working remotely will have seen that some of their “trust issues” have been proved to be unfounded and that staff have been as productive, if not more productive that when working at the office.

Bearing in mind the cost of office space, many companies may find the savings realised by using smaller premises make remote working desirable.

After a major pandemic such as this one, people may be far more cautious about personal hygeine, and become much more concerned to see that public areas are properly sanitised. This could have an effect on the practice of hot desking at work.

The travelling public will probably also need to see evidence that public transport is cleaned and sanitised far more regulalrly and effectively than currently.

The lack of public trust in the health security of public transport could trigger more car use, as people seek to protect themselves with more regularised self isolating. Even car sharing could become less popular as people choose not ot sit in close proximity with another individual on their commute.

Who can really say?

If thousands more people take up remote working, there may well be more economic pain ahead for public transport operators.

Railway and air journeys that used to be undertaken for business meetings may well now be conducted using video conferencing using internet platforms such as Skype for Business and Microsoft Teams.

Will our current level of communications network provision be sufficient to accommodate this?

Individuals that were reluctant to order shopping on-line, or use home delivery services prior to COVID 19 have now been using them out of necessity, and many of these people will now be sold on the advantages, leading to further decline of England’s high streets.

Individuals that were previously regular patrons of theatre and cinema will have become adept at streaming movies and watching “live” performances from the comfort of their own homes, using YouTube, Netflix or Amazon Prime.

The question is – will they return to the cinemas and thatres with quite the same degree of regularity as they did before?

It seems that the mainstream media have been focusing on the leisure and retail industries and whilst they do report on the struggle for our manufacturing industries, they do not highlight the underlying problems.

In the UK there is evidence that our contingency planning for a “Hard Brexit” triggered our government to closely examine our logisitcal supply chains with the involvement of the retail and distirbution industries, and this has surely helped ensure that truly essential items remained on the supermarket shelves, despite the media-induced panic buying.

The other aspect to this is the lack of resilience that our manufacturers have against supply chain failures.

Whilst numerous products are proudly made here in the UK, few are totally built here. Huge numbers of manufacturers import sub-assemblies, parts and components from overseas which are used to build their product.

The world’s biggest exporter, China, is, to all intents and purposes, the birthplace of COVID19, and also its primary exporter. The subsequent lockdown of the Chinese economy led to an abundance of British manufacturers struggling to obtain the raw materials, parts, components and sub-components needed to build and sell their own products..

This may result in a baseline realignment of our logisitical networks, and maybe re-initiate inward investment.

Who knows, we may see a slow transformation back into a manufacturing economy again.

This is a bit of a mixed bag then; at more localised levels the possible resulting drop in bus and train usage could lead to more cars on the road, each contributing to climate change. On the other hand, more people at home reduces traffic of any kind on the roads.

There are so many possible futures that could result from the aftermath of CV19, which only action at government level can establish.

This could be a great opportunity for each state to re-evaluate its’s strategies for handling pandemics, and may trigger new systems to increase the robustness of manufacturing bases.

Who knows, it may even give us the required impetus to design an improved model for society that will offer progress on controlling our nemesis of irreversible climate change.

Go Well…