Categories
Climate change Corona Virus COVID 19 cruising Cycling Driving Ecological Electric Transport English Culture English Literature Environment HEALTH Motorcycling Motoring Society Trains Transport Travel Vehicles

If You Think Humanity Is Stupid Now, Keep Polluting and See What Happens…

Climate change.

We have been hearing about it in the news almost every day, until it was supplanted by other issues. The run-up to BREXIT, the general election, floods, and now the Coronavirus pandemic have made us all temporarily dump the issue and public attention is now fully occupied with the control of the global pandemic.

The mainstream media have highlighted the drop in climate-change gases – a direct link to a significant reduction in both travel and manufacturing following global lockdown.

From a planetary perspective, the drop is not highly significant and as soon as lockdown finishes, we will probably revert to our old ways very quickly. 

Having said that, I am hopeful that state governments will use the opportunity to consolidate some of the steps that have been taken to enable the use of alternative means of transport – making that small reductions permanent. 

We have seen cities around the world banning vehicular traffic from city streets, together with enhancing cycle lanes and pedestrian routes, making it easier and cleaner to travel.

Electric Bicycles – the best of both worlds – and you can take them on the train!

This is nowhere near enough, but at least it is showing that people can get around large cities safely without using a car or public transport.

All the media focus revolves primarily around the ever-increasing levels of air pollution that are triggering climate change, rising sea levels and rising temperature.

There is, however, an interesting health issue that lurks in the sidelines.

As a species, we rely on breathing air, from which we extract oxygen, and then exhale CO2, together with other gases such as Nitrogen and Methane, and some organic compounds.

In order for our bodies to function correctly we rely on our lungs to absorb oxygen and exhale the COin the correct ratios. 

The composition of the air that we breathe is 78% Nitrogen, 21% Oxygen, and 1% Argon. There are also traces of CO2, and rare gases such as Xenon, Neon, Helium, Methane.

As we increase the levels of CO2 in the air, our lungs will be unable to exhale the surplus and this will be absorbed into the body, which will have an effect.

According to a recent study conducted by the University of Colorado in Boulder, The Colorado School of Public Health, and the University of Pennsylvania, evidence suggests that future levels of CO2 may severely impair our cognitive ability.

The study based its research on two scenarios; one, a world where human society reduces the amount of CO2 it releases into the atmosphere, and the other where we don’t – “business as usual.”

Alarmingly, even when we do reduce the amount of carbon dioxide that we release into the ecosystem, by the year 2100, individuals would still be exposed to elevated levels (by today’s standards) of CO2 leading to a 25% decrease in cognitive abilities.

The reduction in mental ability is caused by an increase in CO2 in the brain, a condition called Hypercapnia. which leads to a reduction in brain/blood oxygen (Hypoxemia).

The result is a reduction in brain activity, decreased levels of arousal and excitability. On top of this, it induces sleepiness, and anxiety, the result of which is an impact on our cognitive functions such as learning, memory, strategising and crisis management.

Lost Concentration…? Foggy Brain…? Maybe thats Air Pollution for you…Photo by Oladimeji Ajegbile on Pexels.com

This is easily understood. Who hasn’t been in a lecture room, classroom or meeting room, where our concentration wanders, and we get tired and disengaged. The result of excess CO2 released by a lot of individuals. The solution is normally to open a window to let in some fresh air.

But what if the air outside was not really fresh at all? 

A report in 2001 (Robertson) argued that even slightly elevated levels of CO2 (720 parts per million) could cause lowered pH in the blood (acidosis) leading to restlessness, mild hypertension and ultimately confusion.

The report concluded that if we continue with “business as usual”, flagrantly releasing megatons of COinto the atmosphere, by 2100 we could see our cognitive functions reduced by as much as 50%.

Unless we build on this virally-induced reduction in CO2 and continue to decrease global pollution, we may survive this.

If not, we, as a race, are doomed to become the joint recipients of the last-ever Darwin Awards.

Charles Darwin, Author of The Origin of Species.

Go Well…

Categories
Airport aviation Climate change Corona Virus Councils COVID 19 cruising Cycling Driving Ecological Econonomy Electric Transport English Culture Environment Financial Flight HEALTH internet Local Authorities local economy Motoring Movies Music Panic Buying Politics Science Society Technology Trains Transport Travel Vehicles Work

Coronavirus – The Catalyst for Global Change?

Unless you have been living on the Cook Islands for the last few months, you will have heard of Corona Virus, now known as COVID 19.

The virus is officially a global pandemic, and is now rampaging across every continent, leaving a trail of dead.

Here in the United Kingdom, we are in a state of national emergency, and state-sanctioned lockdown is in effect, with only absolutley essential journeys authorised. All retail shops except those selling essential supplies such as food, maedicines and perhaps bizzarely, alcohol are closed.

The London Underground has shut stations across its network, and passengers figures are plummeting.

Stations shut as a result of Coronavirus

Working at home has been the norm for many workers. As a result, the economy is in freefall, with the retail and hospitality sectors being worst hit. Clubs, pubs, cinemas, churches, sports centres, museums and public buildings are now all closed for the immediate future.

The aviation and maritime sectors have been quick to feel the impact of travel restrictions, and many airports are struggling as flights have become virtually non-existent, passenger traffic stagnated, and many airlines now trying to mitigate their losses by flying freight.

Flight Radar 24 – Screenshot showing flights in South East England. This was taken mid morning on the 13th April 2020. This airspace would normally be teeming with traffic, given that this is a Public Holiday in the UK.

Whilst the global shutdown is severely damaging both our manufacturing and financial economies, we are reaping some form of benefit; pollution levels have dropped across the planet, and air quality is improving.

Imagery from the Copernicus Programme’s Sentinel 5P satellite. The left hand image shows Nitrous Oxide pollution over France and Italy. Darker Red is higher levels of pollution. The right hand image shows how the levels and extent have reduced throughout the month of March 2020

It’s not just transport that contributes to atmospheric pollution – industrial and manufacturing activities have fallen across the UK and Europe as countries shutdown their economies to fight the coronavirus pandemic.

This shows that it is possible to stop climate change, but the societal costs are far too high to make this acceptable.

I do believe that when the virus is contained or burnt out, we will emerge from lockdown and social distancing as a changed society.

So, what may happen?

Many firms that up until recently were resistant to their employees working remotely will have seen that some of their “trust issues” have been proved to be unfounded and that staff have been as productive, if not more productive that when working at the office.

Bearing in mind the cost of office space, many companies may find the savings realised by using smaller premises make remote working desirable.

After a major pandemic such as this one, people may be far more cautious about personal hygeine, and become much more concerned to see that public areas are properly sanitised. This could have an effect on the practice of hot desking at work.

The travelling public will probably also need to see evidence that public transport is cleaned and sanitised far more regulalrly and effectively than currently.

The lack of public trust in the health security of public transport could trigger more car use, as people seek to protect themselves with more regularised self isolating. Even car sharing could become less popular as people choose not ot sit in close proximity with another individual on their commute.

Who can really say?

If thousands more people take up remote working, there may well be more economic pain ahead for public transport operators.

Railway and air journeys that used to be undertaken for business meetings may well now be conducted using video conferencing using internet platforms such as Skype for Business and Microsoft Teams.

Will our current level of communications network provision be sufficient to accommodate this?

Individuals that were reluctant to order shopping on-line, or use home delivery services prior to COVID 19 have now been using them out of necessity, and many of these people will now be sold on the advantages, leading to further decline of England’s high streets.

Individuals that were previously regular patrons of theatre and cinema will have become adept at streaming movies and watching “live” performances from the comfort of their own homes, using YouTube, Netflix or Amazon Prime.

The question is – will they return to the cinemas and thatres with quite the same degree of regularity as they did before?

It seems that the mainstream media have been focusing on the leisure and retail industries and whilst they do report on the struggle for our manufacturing industries, they do not highlight the underlying problems.

In the UK there is evidence that our contingency planning for a “Hard Brexit” triggered our government to closely examine our logisitcal supply chains with the involvement of the retail and distirbution industries, and this has surely helped ensure that truly essential items remained on the supermarket shelves, despite the media-induced panic buying.

The other aspect to this is the lack of resilience that our manufacturers have against supply chain failures.

Whilst numerous products are proudly made here in the UK, few are totally built here. Huge numbers of manufacturers import sub-assemblies, parts and components from overseas which are used to build their product.

The world’s biggest exporter, China, is, to all intents and purposes, the birthplace of COVID19, and also its primary exporter. The subsequent lockdown of the Chinese economy led to an abundance of British manufacturers struggling to obtain the raw materials, parts, components and sub-components needed to build and sell their own products..

This may result in a baseline realignment of our logisitical networks, and maybe re-initiate inward investment.

Who knows, we may see a slow transformation back into a manufacturing economy again.

This is a bit of a mixed bag then; at more localised levels the possible resulting drop in bus and train usage could lead to more cars on the road, each contributing to climate change. On the other hand, more people at home reduces traffic of any kind on the roads.

There are so many possible futures that could result from the aftermath of CV19, which only action at government level can establish.

This could be a great opportunity for each state to re-evaluate its’s strategies for handling pandemics, and may trigger new systems to increase the robustness of manufacturing bases.

Who knows, it may even give us the required impetus to design an improved model for society that will offer progress on controlling our nemesis of irreversible climate change.

Go Well…

Categories
Civil liberties Elderly Electric Transport English Culture Motoring Nostalgia Politics Science Society Transport Travel Uncategorized

Elderly Drivers – Good or Bad – I Hope To End Up As One! (Or – Are They Safe?)

I parked the car, nonchalantly locking it with the keyfob, as I do every evening when I return from work.

It was a blustery, rainy late afternoon, and my journey home a relative nightmare. All of the major routes west of Heathrow Airport were in chaos. It seems that the average Brit is breathtakingly incompetent in wet conditions, despite bemoaning that its always raining here.

Either driving lunatically fast, or crawling along far too slowly, the result is multiple accidents, and long holdups. The delays were only made marginally tolerable by listening to the radio.

I decided that the solution to my grumpy mood was to pull my bicycle out of the. garage, and cycle the mile and a half to my alternate refuge, the Passfield Club.

It was only five past five when I arrived, and the place was almost deserted.

I ordered a pint of Fossil Fuel, and went at sat at a table at the far end of the room.

I was thinking about driving. Despite my journey, I knew that I was fortunate to be in a position to drive.

I have held a full licence since February 1977, almost 43 years. The car and motorcycle have become an intrinsic part of my life, and as a relatively fit man, I rarely think of the time when I too will have to hang up my car keys for the final time.

Before that time, I may have to downgrade my vehicle from the small SUV that I drive to a smaller vehicle. Maybe electric?  Who knows.

I recall hearing somewhere that many older people bought an automatic car after maybe decades of driving a manual gearbox car, and subsequently had an accident as a result of confusion over the foot pedals and their location.

 

Also, that older drivers were as dangerous as the young due to their worsening driving abilities.

I wondered if this really was an issue, so I decided to do some research, and here is what I discovered.

According to AXA Insurance’s Technical Director David Williams[1] drivers may face rises in insurance premiums as a result higher compensation claims being awarded following vehicle collisions and accidents.

The two age groups that will be affected most by this will be younger drivers in the 17-24 age group, and those over 75.

That surprised me a little.

Further digging revealed that there are an estimated 2.7 million drivers under the age of 25. Of that figure, 1.3 million are under 22. Combined, these groups make up about 7% of all UK drivers.

Drivers aged 17 -19 represent 1.5% of the driver population, yet they are involved in 9% of all fatal accidents in which they are the driver! Altogether, the under 25 age group are responsible for 85% of all serious injury accidents.

So where does this leave the older driver.

Bizarrely, a quick check of the stats[2] instantly confirms that drivers in the 17-24 category have a very high accident rate comparatively speaking, with 1,912 collisions per billion vehicle miles (CPBVM) travelled. The accident rate then progressively reduces as age increases, reaching its lowest point between the ages of 66 – 70 dropping to just 367 accidents CPBVM.

So, I am, in theory, becoming statistically less likely to have an accident, due to my relentless march into decrepitude.

The accident rate rises slightly thereafter, but peaks to its highest for the 81 – 85 age group – at a massive 2,168 CPBVM.

So, in overall terms, from age 60 to 70, not a bad record.

Some of the reduction may well be inked to the fact that older drivers travel less than other adults, with about half the average mileage covered.

 

Demographically, the older population is forecast to expand and the number of people aged over 65 in the EU is predicted to double between 2010 and 2050.

Now a quick look at the science.

Aging brings with it several inescapable changes, including sensory, psychomotor and cognitive reductions – failing eyesight and hearing, slowing reactions, and slower and impaired judgement.

The higher reported fatality rate for older drivers is due to increasing frailty leading to death in a collision that would have potentially only injured a much younger driver.

Current UK legislation requires that driving licences are renewed when an individual reaches 70, and are valid for three years before requiring to be renewed again. This is a sensible approach.

When combined with requirements placed on medical practitioners to advise the UK Driver Vehicle Licencing Agency of any medical condition which would require the revocation of a driver’s licence.

But us oldies are fighting back!

It would appear from several studies that there is an almost compensatory mechanism at work, and older drivers are good at making sensible adjustments to their driving, and adapt their driving to reduce their exposure to higher risk driving conditions.

Many will stop driving at night, or will adjust the times of day or the days of week on which they travel.

Now – back to my original thoughts.

As an individual with no formalised forensic vehicle accident training, I accepted at face value the statement that elderly drivers should not drive cars with an automatic gearbox.

road-safety-character-elderly-driver

Surprisingly, my research seems to indicate the opposite, and a number of reports actually suggest that older drivers should use an automatic car.

In fact, a Dutch study was conducted by the University of Groningen using a professional driving simulator. The research placed young and older drivers in both an automatic transmission car and a car with a manual gearbox. The subjects were then required to drive several routes, including rural roads, rural roads with random varied intersections and finally a route that necessitated joining a busy motorway, overtaking vehicles and then exiting safely at a junction.

The results were interesting, in that the older drivers performed better in an automatic gearbox car than a manual.

This is possibly because the time lag induced by the age-diminished psycho-motor skills to both brake and shift down the gearbox simultaneously impaired driver performance. This was discussed as far back as 2002[3], where research suggested that older drivers should, in fact switch to driving an automatic car.

Interestingly, even the younger drivers in the sample also performed better when driving an automatic.

I accept that there needs to be a safe transition period, so maybe when drivers get to 65, when they are statistically at their safest, they should change to an automatic car, so that they have a few years to adapt to the differences, so that they may benefit from the additional levels of safety that a car with an automatic gearbox provides.

Manual-Transmissions  0009e2bb5fd7-3095-4bef-8

So, in six years, I will get my electric car, which will not only be cleaner in terms of emissions, but may even help me to stay alive a bit longer!

Mark Charlwood© January 2020

[1] Article Click4Reg April 2017

[2] Older Car Drivers Road Safety Factsheet (2016 data) Published May 2018

 

[3] Warshawsky-Livine & Shinar (2002)

Categories
Aircew Airport Ecological Electric Transport Environment Flight pilots Society Technology Transport Travel Uncategorized

Electric Taxi – A New Brand New Era in Green Aviation Practice

.Ask anyone in the street about pollution and noise, and most folk will immediately talk about the road transport industry, or, if like me, they live near a major airport, then they would probably refer to the airlines.

Over the last fifty years, air travel has opened up a whole new dimension to travellers. Whether travelling on business, or taking the family away, air travel enables people to reach some of the remotest parts of our planet.

During the early and mid parts of the 20th century, air travel was expensive, and only those travellers with access to a large amount of disposable wealth could afford to fly. 

This was in part caused by the relative lack of supporting infrastructure, but the size of aircraft was also a limiting factor.

The biggest direct operating cost for any airline is that of fuel, and the current smaller aeroplanes were unable to offer the economies of scale necessary to place flying within the reach of the average man. 

To put this into perspective, in the early 1960s, the workhorse of the sky was the Boeing B707, which had a seating capacity of about 140. 

On the 22nd January 1970 Pan Am introduced the very first Boeing 747-100 into service. This aeroplane changed the face of aviation forever.  With its massive seating capacity, of more than double that of the 707, the costs for air travel fell dramatically, and even the poorest backpacker could save enough money to make a transatlantic or transpacific flight.

Over the years, developments of the 747 have continued, and as an example, a British Airways 747-400 will carry 345 passengers over vast distances.

But there are always other factors.  The 1973 oil crisis made fuel costs escalate rapidly, and a number of airlines went out of business. Those that survived recognised the need for newer far more fuel efficient aircraft.

Aircraft manufacturers rose to the challenge, and many new aeroplane were developed, constructed from much lighter materials, including polymers and carbon fibre materials. 

Engine manufacturers have developed cleaner, quieter and far more fuel efficient engines, and new software driven control systems enable aircraft to fly far higher, out of the worst of the weather, and at altitudes where engines are even more frugal.

Sadly, this is still not enough.  The global energy crisis continues, and international concern with  climate change is driving fuel costs upwards.

Airlines are looking to save costs wherever they can.  Most airlines will defer operating the Auxiliary Power Unit (APU) until shortly before boarding, and some airlines have established a policy that requires aircraft to be taxied with one engine shut down.

The economics of this are sound, and saving may be made.

According to Airbus Industrie an Airbus A320 fitted with CFM56 engines will burn 250kg of fuel conducting a twenty minute average taxi time. A single engine taxi of the same duration will burn a reduced amount of 190kg.

Using IATA fuel data, jet fuel (Jet A-1) costs £0.3613 per kilo so a single engine taxi will cost the operator £68.65.  Two engines £72.26. This is doubled effectively, as the aircraft also has to taxi in after landing, which again, will take an average of twenty minutes.

Throughout 2014 fuel prices fell by an average of 42.8%, so it is reasonable to assume that they could rise again by the same amount, giving taxi costs of between £98.03 and ££103.19. 

A very simple costing taking into account British Airways fleet of 105 Airbuses, assumes that each aircraft flies 5 sectors a day (5×2 taxies = 10 x 20 minutes x 105) that’s a massive 350 hours of taxiing. 

350 hours x 60 = 21,000 minutes @ 12.5kg/min = 262,500 kg = 262.50 tonnes!

Now the figures look very different. In the above example, fuel currently costs £361.25 per tonne.  

£94,828 to just taxi around the airfield. Remember this is just a single days operation for one short haul fleet. 

Operators will be very keen to both minimise taxi times, and to reduce costs as much as possible during taxiing.

Airbus have been working on a new self propelled taxying system for the Airbus A320 series, known as eTaxi.

This system utilises a powerful air cooled electric motor that drives the main landing gear wheels via a self contained gearbox.

Powered is provided by the APU generator. The eTaxi motor has sufficient power and torque to enable the aircraft to be reversed off the parking stand, and then taxied to the holding point for the departure runway. At this point, the engines may be started.

Naturally, current procedures and checklists would have to be amended and modified to reflect the use of eTaxi to ensure continuation of current ground movement safety.

The eTaxi system offers many benefits.  Airbus’s own studies have shown that even greater fuel savings may be made than by using single engine taxying. 

Using the AP/eTaxi and a single engine for taxying equates to a fuel burn of 140kg, and full electric taxying only 40kg for the same 20 minute taxy.  

 Using the same fleet data as before, the savings are considerable. 

350 hours x 60 = 21,000 minutes @ 2kg/min = kg = 42.00 tonnes!

With fuel in our example currently costing £361.25 per tonne, 42 tonnes costs £15,172.50, a massive daily saving of £79,655.50!

Naturally,  there is a weight penalty for the eTaxi equipment, consisting of motor, gearbox, wiring harness and software and control equipment, but Airbus Industrie quotes this as being about an extra 400kg, and over a 500nm sector, this would require an additional fuel burn of 16kg.

Overall the use of eTaxi with both engines shut down, and including a 5 minute engine warm up and a 3 minute engine cool down, will offer a trip fuel saving of about 3% on a typical A320 sector of 700nm. 

So, the airline accountants will be happy with the considerable direct financial savings.  However, there are many other associated benefits by using an eTaxi. 

During taxying operations, aircraft frequently have to stop, accelerate, turn and hold in position.  This places wear on the brakes, and incurs fuel penalties every time that the thrust levers are opened to recommence taxying.  

As eTaxi is a direct drive system, the normal wheel brakes become redundant, the braking being delivered through the gearbox itself.  

 Environmentally, eTaxi makes a lot of sense.  The use of clean electricity for ground movements will significantly reduce the amount of NOx (Nitrogen Oxides such as Nitric Oxide and Nitrogen Dioxide) and CO (Carbon Monoxide) found in the local atmosphere.  Noise levels will also be significantly reduced. 

An additional benefit is a reduced exposure to the risk of the engine ingesting foreign objects, and extending the time between mandated engine inspections and checks.  

Bearing in mind that the biggest cost for an airline is fuel. Last year British Airways spent £3.5 Billion pounds on fuel. Most large national carriers will be spending about the same.  The figures are almost too large to contemplate. 

It would appear then, that any additional costs in retrofitting such devices to an existing fleet will pay for itself many times over, and any airline that specifies new deliveries without this option are potentially wasting millions.

Facts from Airbus Industrie publication FAST 51

Fuel costs from IATA Fuel cost analysis 2015

BA fleet data from http://www.ba.com

BA Fuel costs data from http://www.iag.com

Mark Charlwood©2015. Mark Charlwood is the owner of the intellectual property rights to this work. Unauthorised use is not permitted. If you want to use this article please contact me for permission. Thank you. 

Categories
Electric Transport

FWD Hub Motor

FWD Hub Motor

Typical Front Wheel Drive Hub Motor