Mobile Communications – The Big Question Part 2

What to believe?

Whilst researching for my previous article covering the climate change impact of mobile communications, I came across further research which claims that mobile communications enables an overall reduction in Mega tonnes of CO2 equivalents per year (mtCO2e/yr).

Very odd.

My previous article presented facts that appeared to prove that the ever-increasing use of smartphones and mobile technology communications was responsible for contributing millions of tons of CO2 into the atmosphere.

It would be useful to define mobile communications at this point. It covers quite a wide range of systems including mobile telephone networks, public Wi-Fi networks, Wide Area Networks, and Satellite networks.

To be fair, most of the carbon footprint was directly related to the extraction of materials and the subsequent production of the technology itself. The remaining contribution was as a result of the use of the equipment and the supporting infrastructure, such as powering data processing centres and the associated communications networks.

The research appeared to take no account of the societal changes caused by the use of such disrupting technology, and the reduction in the carbon footprint of mobile communications.

The counter arguments presented in this article are as convincing and fact-based as the arguments that mobile communications are climate change’s bad guys.

According to a report commissioned by The Carbon Trust, the use of mobile communications actually leads to an abatement of the carbon emissions generated by the use of that technology – approximately five times as much carbon emissions are abated as the emissions generated.

That’s quite a factor.

Use of mobile communications in the EU and the USA is currently enabling a reduction of about 180 million tonnes of CO2 equivalence per year – an amount greater than the annual carbon emissions generated by the Netherlands.

Part of the UK Mobile Communications Network

So how does this pay-off happen?

A significant percentage of the total reduction in COe – about 70%, is generated by what is known as Machine to Machine (M2M) systems.

Mobile communications have enabled our infrastructure to become “smart”.  

“Smart” buildings are fitted with several types of systems, such as those that monitor occupancy levels and turn lighting on or off as needed, and control heating, ventilation and temperatures according to programmed levels. Sensors fitted throughout the building communicate wirelessly to the controller to enable precise control of energy use and therefore costs.

In some cases, several buildings may be communicating with a server-controller located remotely, and if this is the case, it is likely that the internet or the cellular communications system may be the data carrier.

This type of technology is not limited to just commercial premises.

Flick through some of the glossier housing magazines, and you will find references to “smart homes”

Smart homes are designed and built to encompass the latest control systems. Many household systems may be configured and controlled using nothing more than a standard smart phone using simple software.

Owners of a smart home may be able to control heating, unlock or lock doors, operate lighting, close or open curtains, respond to the doorbell, play music, or switch the TV on or off.

A Typical Smart Home kit, with Heat Control, Lighting, Doorbell and Power Sockets

Some systems will have algorithms that learn the users tastes and preferences and will detect when the house has become un-occupied, and will back off the heating, and control lighting as needed.

This is often accomplished by the detection of system-recognised mobile phones. When the mobile phone(s) leaves the home for more than the programmed time period, the system decides that the house is now un-occupied.

When the homeowner leaves work and gets within a predefined distance or time from home, the phone will autonomously communicate with the house, and the system can put the heat on, close the curtains, put the lights on, and be playing music on the owners’ arrival.

So, whilst data is being exchanged (at an environmental cost) the more intelligent use of power and energy compensates for this. In the world of commerce and business the savings may be truly on an industrial scale.

Local Authorities also benefit from M2M communications and are able to control street lighting and municipal lighting based on pedestrian or vehicular activity. Street lights may be able to communicate with each other and be able to adjust to lower light levels when there is no detected activity. This not only conserves energy, but also prevents light pollution from degrading the night time landscape.

Smart Street Light, fitted with LEDs and clearly showing communications antennae. And Three Pigeons

Some towns have introduced smart refuse bins, which communicate their fill state to the local authority waste processing system. This enables real-time assessment of refuse collection requirements and enables collections to be scheduled only when needed. This has the net effect of making the collection of household waste much more efficient, saves money, and reduces the number of truck journeys made.

A Smart Refuse Bin, capable of sending it’s status to the Waste Collection System

Furthermore, intelligent use of M2M enabled traffic signals can change sequencing according to traffic levels and ease delays, in turn reducing the emissions levels from vehicle exhausts. In the future, as vehicles become internet enabled, they will be able to communicate directly with both the infrastructure and each other, leading to more efficient use of the road system, lowering fuel requirements and hopefully reducing accidents.

Traffic Signal capable of interacting with other signals at other junctions to improve traffic flows.

Mobile Communications has really come of age with faster, secure networks that have enabled a huge number of individuals to work at home.

According to the Office of National Statistics (UK) in January 2014 there were about 4.2 million people working remotely – an impressive 14% of the UK’s workforce. That’s a good few cars and their associated emissions taken off the road.

With growth in the self-employed “gig economy” the number of people working from anywhere (WFA) is bound to have expanded, which is good for the environment, and better for both the employer and the employee[1]

Working From Anywhere – All that’s needed is a Tablet or a Laptop and an internet connection
Photo by Snapwire on Pexels.com

Using mobile communications, it is possible to attend meetings remotely, using systems such as Skype, which are sophisticated enough to enable delegates to share their computer screens with other team members working at the office or from home.

Mobile comms also cuts down on wasted paper, saving trees. Simple smartphone-based apps enable an employee to submit their expenses remotely, simply taking photos of receipts, and submitting them electronically.  This reduces postage costs, as well as saving paper and time.

The rapid acceptance of smartphones and their associated technologies, has also stimulated behavioural changes in people’s personal lives.

Today, an average person may unwittingly reduce their carbon footprint by using video calling to talk to friends and family. In many cases this saves a time consuming drive to each other’s homes.  It’s not quite the same as visiting, but enables better use of time, and again, takes another polluting journey off the road network.

Mobile comms also impacts on the provision of healthcare.

Individuals with serious and chronic health problems will often require frequent visits to hospitals and clinics in order to monitor their conditions, or to discuss their symptoms with a healthcare professional.

Personal Health Monitor linked to a Smartphone

Smart phones and wearable technologies such as smart watches and fitness trackers are already beginning to enable a far more consistent capture of healthcare data. Suitable software programme can then transmit this over the mobile networks to the individual’s doctor.

Wearable Technology is getting evermore sophisticated…

Whilst this may not have a huge impact at current levels, as this become more accepted in the medical community, it will save journeys to hospitals, for both patients and visitors. It also enables patients to be potentially cared for at home rather than in hospital, which reduces consumption further.

Even agriculture and forestry benefits from the use of mobile communications.

Arable farmers may make use of smartphone and laptop-based systems to monitor crop conditions and target which areas of fields may require dressing with fertiliser. Natural fertiliser is an animal by-product which subsequently releases methane into the atmosphere.

Smartphone App to pre- plan an Aerial Survey conducted by a Drone linked to the Smartphone itself!

Applying less fertiliser and targeting it where it’s needed is far more effective and eco-friendly than just applying a regular amount onto a crop that may not need it. This also saves runoff from fields polluting the water table – so a double benefit!

Animal farmers are already using smart apps that monitor the health of pregnant cattle, and herds may be monitored by GPS trackers – all enabled by mobile communications. This allows farmers to reduce veterinary call-outs, and simplify herding journeys, saving both time, money and the environment.

Moo Monitor – A mobile based animal health monitor.

Having researched the information from both sides, my personal jury is still out on this subject. It has to be borne in mind that the report produced by the Carbon Trust was supported and funded by EE, BT, Telefonica (Who own O2 in the UK, and provide mobile comms globally) and Vodafone.

I am, however, a firm supporter of reducing traffic wherever and however possible, and working remotely using mobile comms is an obvious way to do this.

Go Well…


[1] A key takeaway from our research is that if a work setting is ripe for remote work – that is, the job is fairly independent and the employee knows how to do their job well – implementing WFA (working from anywhere) can benefit both the company and the employee” The Harvard Business Review

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s